1 | Introduction (PDF) |
Fundamental Examples of the Polynomial Method |
2 | The Berlekamp-Welch Algorithm (PDF) |
3 | The Finite Field Nikodym and Kakeya Theorems (PDF) |
4 | The Joints Problem (PDF) |
5 | Why Polynomials? (PDF) |
Background in Incidence Geometry |
6 | Introduction to Incidence Geometry (PDF) |
7 | Crossing Numbers and the Szemeredi-Trotter Theorem (PDF) |
8 | Crossing Numbers and Distance Problems (PDF) |
9 | Crossing Numbers and Distinct Distances (PDF) |
10 | Reguli; The Zarankiewicz Problem (PDF) |
11 | The Elekes-Sharir Approach to the Distinct Distance Problem (PDF) |
Algebraic Structure |
12 | Degree Reduction (PDF) |
13 | Bezout Theorem (PDF) |
14 | Special Points and Lines of Algebraic Surfaces (PDF) |
15 | An Application to Incidence Geometry (PDF) |
16 | Taking Stock (PDF) |
Cell Decompositions |
17 | Introduction to the Cellular Method (PDF) |
18 | Polynomial Cell Decompositions (PDF) |
19 | Using Cell Decompositions (PDF) |
20 | Incidence Bounds in Three Dimensions (PDF) |
21 | What's Special About Polynomials? (A Geometric Perspective) (PDF) |
Ruled Surfaces and Projection Theory |
22 | Detection Lemmas and Projection Theory (PDF) |
23 | Local to Global Arguments (PDF) |
24 | The Regulus Detection Lemma (PDF) |
The Polynomial Method in Number Theory |
25 | Introduction to Thue's Theorem on Diophantine Approximation (PDF) |
26 | Thue's Proof (Part I) (PDF) |
27 | Thue's Proof (Part II): Polynomials of Two Variables (PDF) |
28 | Thue's Proof (Part III) (PDF) |
Introduction to the Kakeya Problem |
29 | Background on Connections Between Analysis and Combinatorics (Loomis-Whitney) (PDF) |
30 | Hardy-Littlewood-Sobolev Inequality (PDF) |
31 | Oscillating Integrals and Besicovitch's Arrangement of Tubes (PDF) |
32 | Besictovitch's Construction (PDF) |
33 | The Kakeya Problem (PDF) |
34 | A Version of the Joints Theorem for Long Thin Tubes (PDF) |