Readings

G = Buy at Amazon Goodman, Joseph W. Statistical Optics. Hoboken, NJ: Wiley-Interscience, 2000. ISBN: 9780471399162.
B = Buy at Amazon Bertero, Mario, and Patrizia Boccacci. Introduction to Inverse Problems in Imaging. London, NY: Taylor & Francis, 1998. ISBN: 9780750304351.

LEC # TOPICS READINGS
1 Introduction: Statistical Optics, Inverse Problems
2 Fourier Optics Overview
3 Random Variables: Basic Definitions, Moments G2.1-4
4 Random Variables: Transformations, Gaussians G2.5-9
5 Examples: Probability Theory and Statistics Notes
6 Random Processes: Definitions, Gaussian, Poisson G3.1-7
7 Examples: Gaussian Processes Notes
8 Random Processes: Analytic Representation G3.8-10
9 Examples: Complex Gaussian Processes Notes
10 1st-Order Light Statistics G4.1-4
11 Examples: Thermal and Laser Light Notes
12 2nd-Order Light Statistics: Coherence G5.1-3
13 Example: Integrated Intensity G6.1
14 The van Cittert-Zernicke Theorem G5.4-6
15 Example: Diffraction from an Aperture G5.7
16 The Intensity Interferometer

Speckle
G6.3

7.5
17 Examples: Stellar Interferometer, Radio Astronomy,
Optical Coherence Tomography
Notes
18 Effects of Partial Coherence on Imaging Class
19 Information Theory: Entropy, Mutual Information Notes
20 Example: Gaussian Channels Notes
21 Convolutions, Sampling, Fourier Transforms

Information-Theoretic View of Inverse Problems
B2.1-7

and Notes
22 Imaging Channels

Regularization
B3.1-5,

5.1-3
23 Inverse Problem Case Study: Tomography

Radon Transform, Slice Projection Theorem
B8.2-3

9.5, 11.1
24 Filtered Backprojection B11.2-3
25 Super-Resolution and Image Restoration B10.1-5, 11.4-5
26 Information-Theoretic Performance of Inversion Methods Class