Course Meeting Times
Lectures: 2 sessions / week, 1.5 hours / session
Recitations: 1 session / week, 1 hour / session
Course Description
This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.
Instructors
Prof. Lorna Gibson (Mechanical Properties)
Prof. Eugene Fitzgerald (Electronic Properties)
Grading
ACTIVITIES | PERCENTAGES |
---|---|
Mechanical properties section of course (1 test) | 50% |
Electronic properties section of course (1 test) | 50% |
There will be weekly problem sets for both sections of the subject that will not be graded. Solutions will be available the week after the problem sets are assigned.
There will be no final exam.
Texts
Mechanical Properties
Hertzberg, Richard W. Deformation and Fracture Mechanics for Engineering Materials. 4th ed. New York, NY: Wiley, 1995. ISBN: 9780471012146.
Mechanical Behaviour of Materials handout (unavailable).
Electronic Properties
Livingston, James D. Electronic Properties of Engineering Materials. New York, NY: Wiley, 1999. ISBN: 9780471316275.