Lecture Notes

LEC # TOPICS FILES
1 Stationarity, lag operator, ARMA, and covariance structure Lecture 1 Notes (PDF)
2 Limit theorems, OLS, and HAC Lecture 2 Notes (PDF)
3 More HAC and intro to spectrum Lecture 3 Notes (PDF)
4 Spectrum Lecture 4 Notes (PDF)
5 Spectrum estimation and information criteria Lecture 5 Notes (PDF)
6 GMM Lecture 6 Notes (PDF)
7–8 Weak IV Lecture 7 and 8 Notes (PDF)
9 Bootstrap Lecture 9 Notes (PDF)
10 Introduction to VARs Lecture 10 Notes (PDF)
11 VARs Lecture 11 Notes (PDF)
12–13 Structural VARs Lecture 12 and 13 Notes (PDF)
14 Factor models Lecture 14 Notes (PDF)
15 Factor models part 2 Lecture 15 Notes (PDF)
16 Empirical processes Lecture 16 Notes (PDF)
17 Unit roots Lecture 17 Notes (PDF)
18 More non-stationarity Lecture 18 Notes (PDF)
19 Breaks and cointegration Lecture 19 Notes (PDF)
20 Cointegration Lecture 20 Notes (PDF)
21 Filtering, state space models, Kalman filter Lecture 21 Notes (PDF)
22 State-space models, ML estimation, DSGE models Lecture 22 Notes (PDF)
23–24 Intro to Bayes approach, reasons to be Bayesian Lecture 23 and 24 Notes (PDF)
25 MCMC: Metropolis Hastings Algorithm Lecture 25 Notes (PDF)
26 MCMC: Gibbs sampling Lecture 26 Notes (PDF)