Synthesis of Polymers

Photo of the edge of a tennis racket.

Tennis racquets, a use for Kevlar®, a polyaramid. Kevlar® is made from monomers 1,4-phenylene-diamine (para-phenylenediamine) and terephthaloyl chloride. Learn more in Lecture 7. (Image courtesy of Alejandro Colombo.)

Instructor(s)

MIT Course Number

10.569

As Taught In

Fall 2006

Level

Graduate

Cite This Course

Course Description

Course Features

Course Description

Studies synthesis of polymeric materials, emphasizing interrelationships of chemical pathways, process conditions, and microarchitecture of molecules produced. Chemical pathways include traditional approaches such as anionic polymerization, radical condensation, and ring-opening polymerizations. Other techniques are discussed, including stable free radical polymerizations and atom transfer free radical polymerizations (ARTP), catalytic approaches to well-defined architectures, and polymer functionalization in bulk and at surfaces. Process conditions include bulk, solution, emulsion, suspension, gas phase, and batch vs. continuous fluidized bed. Microarchitecture includes tacticity, molecular-weight distribution, sequence distributions in copolymers, errors in chains such as branches, head-to-head addition, and peroxide incorporation.

Acknowledgements

The instructor would like to thank Karen Shu and Karen Daniel for their work in preparing material for this course site.

Related Content

Paula Hammond. 10.569 Synthesis of Polymers. Fall 2006. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.


For more information about using these materials and the Creative Commons license, see our Terms of Use.


Close