Readings

WEEK # TOPICS READINGS
1

Introduction of instructor and students and course overview

See the Lecture Summary

[No Readings]
2

The vulnerability of mtDNA and consequences of oxidative damage

See the Lecture Summary

Paper 1

Richter, C., J. W. Park, and B. Ames. "Normal Oxidative Damage to Mitochondrial DNA is Extensive." PNAS 85 (1988): 6465-67. (This resource may not render correctly in a screen reader.PDF)

Paper 2

Pinz, K. G., S. Shibutani, and D. F. Bogenhagen. "Action of Mitochondrial DNA Polymerase γ at Sites of Base Loss or Oxidative Damage." The Journal of Biological Chemistry 270 (1988): 9202-06.

3

Repair of 8-oxoG from the mitochondrial genome: The importance of OGG1 and base excision repair pathways

See the Lecture Summary

Paper 1

Dobson, A. W., Y. Xu, M. R. Kelley, S. P. LeDoux, and G. Wilson. "Enhanced Mitochondrial DNA Repair and Cellular Survival after Oxidative Stress by Targeting the Human 8-Oxoguanine Glycosylase Repair Enzyme to the Mitochondria." Journal of Biological Chemistry 275 (2000): 37518-23.

Paper 2

De Souza-Pinto, N. C., L. Eide, B. Hogue, T. Thybo, T. Stevsner, E. Seeberg, A. Klungland, and V. Bohr. "Repair of 8-Oxodeoxyguanosine Lesions in the Mitochondrial DNA Depends on the Oxoguanine DNA Glycosylase (OGG1) Gene and 8-Oxoguanine Accumulates in the Mitochondrial DNA of OGG1-defective Mice." Cancer Research 61 (2001): 5378-81.

4

The mitochondrial theory of aging and the importance of OGG1

See the Lecture Summary

Paper 1

Stuart, J. A., B. M. Bourque, N. C. de Souza-Pinto, and V. A. Bohr. "No Evidence of Mitochondrial Respiratory Dysfunction in OGG1-null Mice Deficient in Removal of 8-oxodeoxyguanine from the Mitochondrial DNA." Free Radical Biology & Medicine 38 (2005): 737-45.

Paper 2

Bacsi, A., G. Chodaczek, T. K. Hazra, D. Konkel, and I. Boldogh. "Increased ROS Generation in Subsets of OGG1 Knockout Fibroblast Cells." Mechanisms of Ageing and Development 128 (2007): 637-49.

5

Mouse models for mtDNA mutation and aging

See the Lecture Summary

Paper 1

Kujoth G. C., A. Hiona, T. D. Pugh, S. Someya, K. Panzer, S. E. Wohlgemuth, T. Hofer, A. Y. Seo, R. Sullivan, W. A. Jobling, J. D. Morrow, H. Van Remmen, J. M. Sedivy, T. Yamasoba, M. Tanokura, R. Weindruch, C. Leeuwenburgh, and T. A. Prolla. "Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging." Science 309 (2005): 481-4.

Paper 2

Vermulst M., J. H. Bielas, G. C. Kujoth, W. C. Ladiges, P. S. Rabinovitch, T. A. Prolla, and L. A. Loeb. "Mitochondrial Point Mutations Do Not Limit the Natural Lifespan of Mice." Nature Genetics 39 (2007): 540-43.

6

Oxidative damage and base excision repair in Alzheimer's disease

See the Lecture Summary

Paper 1

Wang J., S. Xiong, C. Xie, W. R. Markesberry, and M. A. Lovell. "Increased Oxidative Damage in Nuclear and Mitochondrial DNA in Alzheimer's Disease." Journal of Neuorchemistry 93 (2005): 953-62.

Paper 2

Weissman L., J. Dong-Gyu, M. M. Sorensn, N. C. de Souza-Pinto, W. R. Merkesberry, M. P. Mattson, and V. A. Bohr. "Defective DNA Base Excision Repair in Brain from Individuals with Alzheimer's Disease and Amnestic Mild Cognitive Impairment." Nucleic Acids Research 35 (2007): 5545-55. (This resource may not render correctly in a screen reader.PDF)

7

mtDNA deletions in neurons and the importance of oxidative phosphorylations

See the Lecture Summary

Paper 1

Kratsberg Y., E. Kudryavtseva, A. McKee, C. Geula, N. Kowall, and K. Khrapko. "Mitochondrial DNA Deletions are Abundant and Cause Functional Impairment in Aged Human Substantia Nigra Neurons." Nature Genetics 38 (2006): 518-20.

Paper 2

Sung H. J., W. Ma, P. Y. Wang, J. Hynes, T. C. O'Riordan, C. A. Combs, J. P. McCoy Jr., F. Bunz, J. G. Kang, and P. M. Hwang. "Mitochondrial Respiration Protects Against Oxygen-Associated DNA Damage." Nature Communications 1 (2010): 1-8.

8

Quality control of mtDNA: The bottleneck and mitochondrial fusion

See the Lecture Summary

Paper 1

Ono T., K. Isobe, K. Nakada, and J. Hayashi. "Human Cells are Protected from Mitochondrial Dysfunction by Complementation of DNA Products in Fused Mitochondria." Nature Genetics 28 (2001) 272-5.

Paper 2

Fan W., K. G. Waymire, N. Narula, P. Li, C. Rocher, P. E. Coskun, M. A. Vannan, J. Narula, G. R. Macgregor, and D. C. Wallace. "A Mouse Model of Mitochondrial Disease Reveals Germline Selection Against Severe mtDNA Mutations." Science 319 (2008): 958-62.

9

From yeast to humans: Conservation of Polγ

See the Lecture Summary

Paper 1

Graziewicz M., R. Bienstock, and W. Copeland. "The DNA Polymerase γ Y955C Disease Variant Associated with PEO and Parkinsonism Mediates the Incorporation and Translesion Synthesis Opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine." Human Molecular Genetics 16 (2007): 2729-39.

Paper 2

Stumpf J., C. M. Bailey, D. Spell, M. Stillwagon, K. Anderson, and W. Copeland. "mip1 Containing Mutations Associated with Mitochondrial Disease Causes Mutagenesis and Depletion of mtDNA in Saccharomyces Cerevisiae." Human Molecular Genetics 19 (2010): 2123-33.

10

Determination of nuclear encoded genes that contribute to mitochondrial disorders

See the Lecture Summary

Paper 1

Spinazzola A., C. Viscomi, E. Fernandez-Vizarra, F. Carrara, P. D'Adamo, S. Calvo, R. M. Marsano, C. Donnini, H. Weiher, P. Strisciuglio, R. Parini, E. Sarzi, A. Chan, S. DiMauro, A. Rötig, P. Gasparini, I. Ferrero, V. K. Mootha, V. Tiranti, and M. Zeviani. "MPV17 Encodes an Inner Mitochondrial Membrane Protein and is Mutated in Infantile Hepatic Mitochondrial DNA Depletion." Nature Genetics 38 (2006): 570-75.

Paper 2

Sugiana C., D. J. Pagliarini, M. McKenzie, D. M. Kirby, R. Salemi, K. K. Abu-Amero, H. H. Dahl, W. M. Hutchison, K. A. Vascotto, S. M. Smith, R. F. Newbold, J. Christodoulou, S. Calvo, V. K. Mootha, M. T. Ryan, and D. R. Thorburn. "Mutations of C20orf7 Disrupts Complex I Assembly and Causes Lethal Neonatal Mitochondrial Disease." American Journal of Human Genetics 83 (2008): 468-78.

11

Field trip to the Laboratory of Vamsi Mootha at Massachusetts General Hospital

See the Lecture Summary

[No Readings]
12

mtDNA in cancer and chemotherapeutic resistance

See the Lecture Summary

Paper 1

Carew J. S., Y. Zhou, M. Albitar, J. D. Carew, M. J. Keating, and P. Huang. "Mitochondrial DNA Mutations in Primary Leukemia Cells After Chemotherapy: Clinical Significance and Therapeutic Implications." Leukemia 17 (2003): 1437-47.

Paper 2

Mizutani S., Y. Miyato, Y. Shidara, S. Asoh, A. Tokunaga, T. Tajiri, and S. Ohta. "Mutations in the Mitochondrial Genome Confer Resistance of Cancer Cells to Anticancer Drugs." Cancer Science 100 (2009): 1680-87.

13

Levels of ROS in the mitochondria of cancer cells

See the Lecture Summary

Paper 1

Park J. S., L. K. Sharma, H. Li, R. Xiang, D. Holstein, J. Wu, J. Lechleiter, S. L. Naylor, J. J. Deng, J. Lu, and Y. Bai. "A Heteroplasmic, not Homoplasmic, Mitochondrial DNA Mutation Promotes Tumorigenesis via Alteration in Reactive Oxygen Species Generation and Apoptosis." Human Molecular Genetics 18 (2009): 1578-89.

Paper 2

Kulawiec M., K. M. Owens, and K. Singh. "Cancer Cell Mitochondria Confer Apoptosis Resistance and Promote Metastasis." Cancer Biology and Therapy 8 (2009): 1378-85.

14

Oral presentations

See the Lecture Summary

[No Readings]