Readings

SES # TOPICS READINGS
1

Introduction

See the Lecture Summary

No readings
2

Cellular correlates of memory and memory erasure: Long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength

See the Lecture Summary

Paper 1

First demonstration of long-term potentiation in a hippocampal preparation of anaesthetized rabbits.
- Bliss, T. V., and T. Lomo. "Long-lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anaesthetized Rabbit Following Stimulation of the Perforant Path." J Physiol 232 (1973): 331-356.

Paper 2

The authors show that the expression of LTP depends on extracellular calcium.
- Dunwiddie, T. V., and G. Lynch. "The Relationship Between Extracellular Calcium Concentrations and the Induction of Hippocampal Long-term Potentiation." Brain Res 169 (1979): 103-110.

3

The NMDA receptor, a gatekeeper for synaptic plasticity

See the Lecture Summary

Paper 1

The authors apply a pharmacological approach to identify NMDA as a potent inhibitor of synaptic transmission.
- Collingridge, G. L., S. J. Kehl, and H. McLennan. "Excitatory Amino Acids in Synaptic Transmission in the Schaffer Collateral-Commissural Pathway of the Rat Hippocampus." J Physiol 334 (1983): 33-46.

Paper 2

The authors demonstrate that NMDA receptor subunit composition is instrumental for its synaptic insertion.
- Barria, A., and R. Malinow. "Subunit-Specific NMDA Receptor Trafficking to Synapses." Neuron 35 (2002): 345-353.

4

Making silent synapses talk: Activation of the NMDA receptor recruits AMPA-type glutamate receptors to synaptic sites

See the Lecture Summary

Paper 1

Evidence for silent synapses.
- Isaac, J. T., R. A. Nicoll, and R. C. Malenka. "Evidence for Silent Synapses: Implications for the Expression of LTP." Neuron 15 (1995): 427-434.

Paper 2

Activation of silent synapses.
- Liao, D., N. A. Hessler, and R. Malinow. "Activation of Postsynaptically Silent Synapses During Pairing-Induced LTP in CA1 Region of Hippocampal Slice." Nature 375 (1995): 400-404.

5

AMPA receptor endocytosis as a key mechanism for regulating synaptic strength

See the Lecture Summary

Paper 1

Dynamin-dependent endocytosis of ionotropic glutamate receptors.
- Carroll, R. C., E. C. Beattie, H. Xia, C. Luscher, Y. Altschuler, R. A. Nicoll, R. C. Malenka, and M. von Zastrow. "Dynamin-dependent Endocytosis of Ionotropic Glutamate Receptors." Proc Natl Acad Sci USA 96 (1999): 14112-14417.

Paper 2

Reinsertion and Degradation of AMPA receptors.
- Ehlers, M. D. "Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting." Neuron 28 (2000): 511-525.

6

Metabotropic glutamate receptors (mGluRs) are potent mediators of long-term synaptic depression (LTD)

See the Lecture Summary

Paper 1

Internalization of ionotroplic glutamate receptors in response to mGluR activation.
- Snyder, E. M., B. D. Philpot, K. M. Huber, X. Dong, J. R. Fallon, and M. F. Bear. "Internalization of Ionotropic Glutamate Receptors in Response to MGluR Activation." Nat Neurosci 4 (2001): 1079-1085.

Paper 2

Metabotropic glutamate receptor activation causes rapid redistribution of AMPA receptors.
- Xiao, M. Y., Q. Zhou, and R. A. Nicoll. "Metabotropic Glutamate Receptor Activation Causes a Rapid Redistribution of AMPA Receptors." Neuropharmacology 41 (2001): 664-671.

7

Synaptic scaling as a mechanism to globally tune synapse strength

See the Lecture Summary

Paper 1

Activity-dependent scaling of quantal amplitude in neocortical neurons.
- Turrigiano, G. G., K. R. Leslie, N. S. Desai, L. C. Rutherford, and S. B. Nelson. "Activity-Dependent Scaling of Quantal Amplitude in Neocortical Neurons." Nature 391 (1998): 892-896.

Paper 2

Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors.
- Shepherd, J. D., G. Rumbaugh, J. Wu, S. Chowdhury, N. Plath, D. Kuhl, R. L. Huganir, and P. F. Worley. "Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors." Neuron 52 (2006): 475-484.

8

Neurite outgrowth: constructing elaborate neuronal circuits

See the Lecture Summary

Paper 1

Neurotrophin Regulation of Cortical Dendritic Growth Requires Activity.
- McAllister, A. K. , L. C. Katz, and D. C. Lo. "Neurotrophin Regulation of Cortical Dendritic Growth Requires Activity." Neuron 17 (1996): 1057-1064.

Paper 2

Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo.
- Cantallops, I., K. Haas, and H. T. Cline. "Postsynaptic CPG15 Promotes Synaptic Maturation and Presynaptic Axon Arbor Elaboration in Vivo." Nat Neurosci 3 (2000): 1004-1011.

9

Synaptogenesis

See the Lecture Summary

Paper 1

Assembling the Presynaptic Active Zone: A Characterization of an Active Zone Precursor Vesicle.
- Zhai, R. G. , H. Vardinon-Friedman, C. Cases-Langhoff, B. Becker, E. D. Gundelfinger, N. E. Ziv, and C. C. Garner. "Assembling the Presynaptic Active Zone: a Characterization of an Active One Precursor Vesicle." Neuron 29 (2001): 131-143.

Paper 2

Rapid recruitment of NMDA receptor transport packets to nascent synapses.
- Washbourne, P., J. E. Bennett, and A. K. McAllister. "Rapid Recruitment of NMDA Receptor Transport Packets to Nascent Synapses." Nat Neurosci 5 (2002): 751-759.

10

Field trip to the Eli and Edythe L. Institute and the Nedivi Lab

See the Lecture Summary

No readings
11

Activity-induced synapse turnover

See the Lecture Summary

Paper 1

Dendritic spine changes associated with hippocampal long-term synaptic plasticity.
- Engert, F., and T. Bonhoeffer. "Dendritic Spine Changes Associated With Hippocampal Long-Term Synaptic Plasticity." Nature 399 (1999): 66-70.

Paper 2

Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases.
- Yasuda, S., H. Tanaka, H. Sugiura, K. Okamura, T. Sakaguchi, U. Tran, T. Takemiya, A. Mizoguchi, Y. Yagita, and T. Sakurai, et al. "Activity-Induced Protocadherin Arcadlin Regulates Dendritic Spine Number by Triggering N-Cadherin Endocytosis Via TAO2beta and P38 MAP Kinases." Neuron 56 (2007): 456-471.

12

Activity-regulated gene expression in neurons

See the Lecture Summary

Paper 1

Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB.
- Sheng, M., G. McFadden, and M. E. Greenberg. "Membrane Depolarization and Calcium Induce c-fos Transcription via Phosphorylation of Transcription Factor CREB." Neuron 4 (1990): 571-582.

Paper 2

Numerous candidate plasticity-related genes revealed by differential cDNA cloning.
- Nedivi, E., D. Hevroni, D. Naot, D. Israeli, and Y. Citri. "Numerous Candidate Plasticity-related Genes Revealed by Differential cDNA Cloning." Nature 363 (1993): 718-722.

13

Final assignment and closing remarks

See the Lecture Summary

No readings