Lecture Notes

LEC # TOPICS LECTURE NOTES
1 Why automatic control? Categorization of control systems Lecture notes 1 (PDF)
2 Block diagrams, the effect of feedback Lecture notes 2 (PDF)
3 Modeling principles Lecture notes 3 (PDF)
4 Block diagram manipulations, Mason' rule Lecture notes 4 (PDF)
5 Dynamic response of closed-loop systems Lecture notes 5 (PDF)
6 Time-domain specifications Lecture notes 6 (PDF)
7 Effect of zeros Lecture notes 7 (PDF)
8 The Routh criterion Lecture notes 8 (PDF)
9 Effect of noise, steady-state errors Lecture notes 9 (PDF)
10 PID control Lecture notes 10 (PDF)
11 The root locus method Lecture notes 11 (PDF)
12 Root locus rules Lecture notes 12 (PDF)
13 Root locus rules, lead compensation Lecture notes 13 (PDF)
14 Lag compensation Lecture notes 14 (PDF)
15 Zero degree root locus Lecture notes 15 (PDF)
16 Frequency response design Lecture notes 16 (PDF)
17 Bode plot problems Lecture notes 17 (PDF)
18 Bode plots (cont.) Lecture notes 18 (PDF - 1.6MB)
19 Complex poles and zeros, unstable poles, and non-minimum phase zeros Lecture notes 19 (PDF)
20 The Nyquist stability criterion Lecture notes 20 (PDF)
21 The Nyquist stability criterion (cont.) Lecture notes 21 (PDF)
22 Nyquist with poles on imaginary axis Lecture notes 22 (PDF)
23 Stability margins, Bode gain-phase theorem Lecture notes 23 (PDF)
24 Bode compensation Lecture notes 24 (PDF)
25 Lead compensation Lecture notes 25 (PDF)
26 Lag compensation (cont.) Lecture notes 26 (PDF)
27 NMP systems Lecture notes 27 (PDF)
28 The Nichols chart Lecture notes 28 (PDF)
29 Digital control, the z-transform Lecture notes 29 (PDF)
30 The z‐transform, design by emulation, the Tustin transform Lecture notes 30 (PDF)
31 Compensator design examples, time delay of ZOH Lecture notes 31 (PDF)
32 Discrete design Lecture notes 32 (PDF)
33 The w-transform Lecture notes 33 (PDF)
34 Design examples, pre‐warping, direct design Lecture notes 34 (PDF)
35 Higher harmonic control Lecture notes 35 (PDF)