Massachusetts Institute of Technology Department of Physics

Physics 8.01L

SAMPLE FINAL EXAM

SOLUTIONS

January 25, 2006

Problem 1

a) $V = \frac{NkT}{P}, V_{NEW} = \frac{Nk\frac{T}{3}}{\frac{P}{10}} = \frac{10}{3}\frac{NkT}{P}, \implies V \text{ goes up}$ **b)** (i) $F = mg = 8(10) = \boxed{80N}$ (ii) $F_{Buoy} = (1000)(.002)(10) = 20N,$ $\therefore F = 80 - 20 = \boxed{60N}$ **c)** Velocity goes down, pressure goes up.

Problem 2

a) Equilibrium, so $F_{Buoyant} - w = 0 \Rightarrow F_B = w$. $F_B = V_f \rho_f g = (\pi r^2 d) \rho g = w$, $d = \frac{w}{\pi r^2 \rho g}$ **b)** $F_{TOT} = Ma = F_B - w$, $F_B = \pi r^2 (\frac{d}{2}) \rho g = d(\frac{\pi r^2 \rho g}{2})$ From (a), $d = \frac{w}{\pi r^2 \rho g} \Rightarrow F_B = \frac{w}{\pi r^2 \rho g} (\frac{\pi r^2 \rho g}{2}) = \frac{w}{2}$ Half as deep \Rightarrow half as large buoyancy force. $F_{TOT} = Ma = \frac{w}{2} - w = \frac{-w}{2}$, $a = \frac{-w}{2m}$, but w = Mg. $\Rightarrow a = \frac{-g}{2}$, accelerating downward at $\frac{g}{2}$.

Problem 3

a) $P + \rho g y = \text{constant}, P_1 + \rho g(0) = P_2 + \rho g(6500)$ $P_2 = P_1 - \rho g(y_2) = 1.013 \times 10^5 - (0.95)(9.8)(6500),$ $P_2 = 4.08 \times 10^4 N/m^2 = 0.40 \text{ atm}$

b)
$$N = \text{const}, V = \text{const}, PV = NkT$$

 $\Rightarrow \frac{P_1}{T_1} = \frac{P_2}{T_2}, T_1 = 293, P_1 = 1.5 \times 10^7, T_2 = 253, P_2 = \frac{P_1 T_2}{T_1} = 1.30 \times 10^7 N/m^2$

Problem 4

ii) f exerts torque around center of mass, so you fall over.

iii) Now N exerts torque which can balance torque due to friction.

Problem 5

a)

b) Take torques around toes: $MgL\cos(\theta) - F(\frac{4L}{3})\cos(\theta) = 0$, $F = \frac{3}{4}Mg$ **c)**T + F = Mg, $T = \frac{1}{4}Mg$.

Problem 6

a) 3Mg + Mg = 4Mg. b) Take torques about left end: 4MgD - LMg = 0, $D = \frac{L}{4}$. Check torque around weight: 0 = D(3Mg) - Mg(L - D), D(4Mg) = MgL, $D = \frac{L}{4}$.

Problem 7

a)

- **b**) $\sum F_x = N_2 + N_1 \sin(\theta) f_1 \cos(\theta) = 0$ $\sum F_y = f_2 - Mg + N_1 \cos(\theta) + f_1 \sin(\theta) = 0$ **c**) $\sum \tau = Mg(\frac{L}{2}\cos(\theta)) - N_1L = 0.$
- d) $\sum \tau = N_2 L \sin(\theta) + f_2 L \cos(\theta) Mg \frac{L}{2} \cos(\theta) = 0.$

Problem 8

a) $\tau = I\alpha$, take torques about hinge. $(Mg)(\frac{L}{2})(\sin(90^\circ)) = (\frac{ML^2}{3})(\alpha) \Rightarrow \alpha = \frac{\frac{gL}{2}}{\frac{L^2}{3}} = \frac{3g}{2L}, \quad \alpha = \frac{3g}{2L}$

 $F = Ma_{cm}, \ a_{cm} = \alpha(\frac{L}{2}), \text{ downward.}$ All forces and acceleration are vertical $\Rightarrow F_H = 0$. $F_V - Mg = -Ma = -M\alpha(\frac{L}{2}) = -M(\frac{3g}{2L})(\frac{L}{2}) = \frac{-3Mg}{4}$ $F_V = Mg - \frac{3Mg}{4} \Rightarrow F_V = \frac{Mg}{4}, F_{TOT} = \frac{Mg}{4}, up$

c) Used fixed pivot:

$$\begin{split} &KE_{I} = 0, \ PE_{I} = MgL, \ KE_{F} = \frac{1}{2}I_{end}\omega^{2}, \ PE_{F} = Mg(\frac{L}{2}), \ \text{Work} = 0.\\ &\frac{1}{2}(\frac{ML^{2}}{3})\omega^{2} + Mg\frac{L}{2} = MgL, \ \frac{ML^{2}\omega^{2}}{6} = \frac{MgL}{2}, \\ & \omega^{2} = \frac{3g}{L} \ \text{or} \ \omega = \sqrt{\frac{3g}{L}}.\\ &\text{Used center of mass:}\\ &KE_{I} = 0, \ KE_{F} = \frac{1}{2}Mv_{CM}^{2} + \frac{1}{2}I_{CM}\omega^{2}, \ v_{CM} = \omega(\frac{L}{2})\\ &KE_{F} = \frac{1}{2}M(\frac{L}{2})^{2}\omega^{2} + \frac{1}{2}(\frac{ML^{2}}{12})\omega^{2} = ML^{2}\omega^{2}(\frac{1}{8} + \frac{1}{24}) = ML^{2}\omega^{2}(\frac{3}{24} + \frac{1}{24})\\ &= ML^{2}\omega^{2}(\frac{1}{6}) \ \Rightarrow \text{ Same answer.} \end{split}$$

Problem 9

a) *L* is conserved:
$$mvR = (I_0 + mR^2)\omega_f$$

$$\boxed{\omega_f = \frac{mvR}{I_0 + mR^2}}$$
b) $KE_I = \frac{1}{2}mv^2$, $KE_F = \frac{1}{2}(I_0 + mR^2)(\frac{mvR}{I_0 + mR^2})^2 = \frac{1}{2}(\frac{m^2v^2R^2}{I_0 + mR^2})$

$$\boxed{\frac{KE_F}{KE_I} = \frac{mR^2}{I_0 + mR^2}}$$

Problem 10

a) Left

b) Yes, gravity.

c) Out of the page; Counter-clockwise.

d) Yes, pivot force.

e) Out of the page; Counter-clockwise.

f) Out of the page.

Problem 11

Take clockwise to be positive. Angular momentum is conserved: $I\omega_I - mv_I d = I\omega_f + mv_f d$ $0.30(\omega) - 0.15(50)(0.8) = 0.3(0.35\omega) + 0.15(40)(0.8)$ $0.20\omega = 6 + 4.8 \Rightarrow \boxed{\omega = 54rad/s}$. Period = 0.12 sec.