
A. APPROXIMATIONS 

In science and engineering, you often approaimate complicated functions by simpler ones 
which are easier to calculate with, and which show the relations between the variables more 
clearly. Of course, the approximation must be close enough to give you reasonable accuracy. 
For this reason, approximation is a skill, one your other teachers will expect you to have. 
This is a good place to start acquiring it. 

Throughout, we will use the symbol a to mean "approximately equal to"; this is a bit 
vague, but making approximations in engineering is more art than science. 

1. The linear approximation; linearizations. 

The simplest way to approximate a function f(z) for values ofz near a jr 
is to use a linear funcion. The linear function we shall use is the one whose 
graph is the tangent line to f(z) at x = a. This makes sense because the 
tangent line at (a, f(a)) gives a good approximation to the graph of f(z), 
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(1) height of the graph of f(z) s heightof the tangent at (a, f(a))

To turn (1) into calculus, we need the equation for the tangent line. Since the line goes 
through (a, f(a)) and has slope f'(a), its equation is 

S f(a) + f'(a)(x - ), 

and therefore (1) can be expressed as 

(2) f(z) f() + f'(a)( - a), for Tua. 

This says that for x near a, the function f(z) can be approximated by the linear function 
on the right of (2). This function - the one whose graph is the tangent line - is called the 
linerization of f(z) at z = a. 

The appraoimation (2) is often written in an equivalent form that you should become 
familiar with; it makes use of a dependent variable. Writing 

(3) v= f(z), A = z- a, Ay = f() - f(a), 

the approximation (2) takes the form 

(2') AL f'(a)Az, for Az . f(a)Ax 

In this form, the quantity on the right represents the change in height of the 
taent line, while the left measures the change in height of the eraph. 

Here are some examples of linear approximations. In all of them, we are taking a = 0,
this being the most important case All can be found by using (2)above and calculating
the derivative. You should verify each of them, and memorize the approximation. 
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Basic Linear Approximations 

1 
(4) r-a 1 + z, for ax 0 ; 

(5) (1 + x)' s 1 + rz, for z s 0 ; r is any real number 

(6) .. . sinz z, for zx 0. 

Note that (4) becomes a special case of (5) if we take r = -1 and replace x by -z; 
nonetheless, learn (4) separately since it is very common. As an example of verification, let 
us check (5): 

f(x) = (1+ x)' f'() = r(1 + x) - , for any real r ; 

S f'(O)=r. 

Therefore, (2) becomes 

f(0) + f'(0)x 

M 1+r , which is(5). 

(1 + z)r p f 

2. The algebraic viewpoint; examples 

Though the three basic approximations given above can be derived by using differen
tiation, many people remember them better by relating them to high school algebra and 
geometry. We show how. 

The approximation (4) can be thought of as coming from the formula for the sumn of a 
geometric series (memorize this too, if you have forgotten it): 

1 -= +xz+x2 +... +zX + ... , IJ < 1.
1-x 

Ifx is small, then the terms z2, X3,... on the right are all negligible compared with the 
term x, so they can be ignored, and we get (4). 

Similarly, the approximation (5) can be thought of as coming from the binomial theorem, 
if r is a positive integer: 

(1+x)r = 1+rzx+ 
r(r - 1) 2+.. + r 
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As before, if x is small, we can neglect the terms in z2, s ,..., and we get the approximation 
(5). Even if r is not an integer, you will learn when you study infinite series that the binomial 
theorem is still formally true. Though it gives an infinite sum on the right, instead of a 
•tini am the r•cffirienta arp till raleul.atMd hv the slmfe fnrmulas -
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Finally,, the linear approximation (6) for sin should make sense if you

think of the trigonometric definition of sinz. Referring to the picture, it

says that a small arc 2z of the unit circle is approximately equal in length

tn the chrd 2sinn~ it nsubtends.Inte hr ýsnxi ubed 
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Continuing this algebraic viewpoint, many other linear approximation formulas can be 
derived from the basic ones above by using algebra, rather than by going back to (2) and 
calculating derivatives. Here are some examples of this. 

Example 1. In each of the following, we want a linear approximation valid for z - 0. 
Observe in the first two how the variable is divided by a number (or "scaled", as one says,
since it amounts to a change of scale or change of units for the variable). The purpose is to 
put the expression in a form where one of the basic approximations can be used. 
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1- , by scaling and using (4);

2+(1 1+ /2 i I 

= %-	 , 
s 3(1+t/18) = 3+t/6, for t- 0,by using (5). 

(b) /9 +t / = 3(1 + t/9) / 2 by scaling; 

Example (b) above is just as easy to do by using (2), since dg +t I 

In example (c) below, however, using (2) would definitely require more work. 

2+z 2+z

(c) 2+x 2+x2 (2+ z)(1- z/2), using (5), then (4);

%1/T	'1+z/2 
P 2, multiplying out and neglecting terms in x2 . 

Notice that in this example, the linearization 2 + 0 turns out to be a constant function. 

Approximations for za a, where a A0 . 

Though it is most common to work near a = 0, sometimes one wants another value of a. 
Either one can use the formula (2), or else one can make a change of variable: h, Az,e are 
all common choices, related to z by 

(7) 	 z = a+ h, z= a+ Az, z= a+e. 

The new variable is then close to 0 when z is close to a. Here is an example. 

Example 2. Approximate 3 + x4 for z m 1. 

Solution. Either use (2), or change variable; doing the latter, we put = 1 + h. Then 

3+z = 3+(1 + h)4,. 
s 3+(1+4h), h;0, using (5); 
S4 + 4(x - I), for z s I. 

Applications. Here are a few typical uses of the linearization. 

Example 3. In the theory of special relativity, the mass m of a body moving with speed 
v is given by 

m oc 
m •= m0 = mass at rest, c= velocity of light 

What speed produces a 1%increase in mass? 
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Solution. We could crank out the answer, using the formula for m, but in practise a 
simplifying approximation would be used. To begin with, scale m and v, i.e., divide them 
by suitable constants to make them dimensionless: m/tmo and v/c; this turns the above 
formula into (dividing top and bottom by c): 

m 1 1 

mo ,/ 1 - v2/c2 - (1- u2)1/2 

where we have set v/c = u;.when v is small compared with c, then u s~ 0. We get, using (5) 
with r = 1/2, 

1 1. u* 

(1- U2)/ 2 1- (1/2)U2 m 1+ + 21 uM0, 

where the second approximation used (4), with x = u2/2. 

This approximation shows that to make m/mo = 1.01 (this represents a 1%increase in 
the mass), we want 

==2/2 i.e., a /. - 1/7..01, = 

The corresponding velocity is (remember that u = v/c): 

v k c/7 s (186, 000/7 mi/sec ; 27, 000 mi/sec. 

Example 4. Give a useful approximate formula, valid for relatively small heights, 
showing how the weight of a body decreases as it rises above the earth, and use your 
formula to determine how high it must rise to experience a 1%loss in weight. 

Solution. Let R be the radius of the earth. The force between two masses mi and M2 
with centers of 'mass separated by a distance d is 

GmimsF = Gmd7 

so if the earth weight is M and our body has weight m, 

GMm

weight at surface = 

GMm 
weight at height h above surface = (R + h)2 so that 

weight at height h R 2 1 
weight at surface (R + h)2 (1 + h/R)2 ' 

where in this last step we made the variable dimensionless by dividing numerator and 
denominator by R2; this scaling also makes the expression simpler. We continue with 
approximations: 

-. (1 - h/R)2 , using (4); 

S1 - 2h/R, • using (5). 

The approximation is valid if h/R e 0, i.e., if h is very small compared to R. 
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Using our approximation, we see that to make the ratio of the weights ; .99, we want 

2h .01R .01 .4, 000 
R S.01, i.e., h = 2 = 22 = 20 miles. 

4. Quadratic approximations. 

To get greater accuracy, sometimes one wants to include higher-order terms in the ap
proximating function. If we include second-order terms - that is, terms in (x - a)2, we get 
what is called a quadratic approximation for x w a. It looks like 

(8) f () s A + B(x - a) + C(x - a)2, z~ a. 

There is a general formula for the coefficients A, B, C using calcihlus, but let's work alge
braically first, and consider the basic approximations. 

Basic Quadratic Approximations 

1-z 

(10) (1+x)r 1 +rz+ 
r(r- 1);2 , forxs0; risanyrealnumber 

(11). sinx M =, for x O. 

(12) cos ;U 1 - - , forzzX 0. 

Discussion 

Formula (9) comes as before from the sum of the geometric series. 

Formula (10) is the beginning of the binomial theorem, if r is an integer. 

Formula (11) looks like our earlier linear approximation, but the assertion here is that it 
is also the best quadratic approximation - that is, the term in x2 has 0 for its coefficient. 
This is so because sin x is an odd function, so the approximating polynomial should be odd 
also, which means it cannot have any x2 term. 

Formula (12) is derived from (11) and the identity sin x+z cos 2 x = 1; this is one of the 
exercises. 

Using these basic quadratic approximations, we can by algebra get quadratic approxima
tions to more involved expressions. Examples are given below. In studying the examples,

Snotice that during the course of the calculation, all approximationsmust be quadratic. If 
one of the approximations you use is only linear, then that contaminates the final result, 
which probably will not have the correct x2 term. This is the same principle you meet in 
adding numbers: if one of the numbers is only good to one decimal place, then no matter 
how accurate all the other numbers are, the sum will only be good to one decimal place. 
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Example 5. By using the basic approximations, give quadratic approximations valid 
for x. 0 for each of the following: cosx 

(a) secx (b) V +3x (c) /1+x+x 2 (d) 1-x


Solution.


(a) sec x = z-- 1 + 2, by (12) and (4). 
cosax 1 - 22/2' 2 

(b) V1 = (1 + 3x)1 / 2 ; 1 + I(3x) - (3x)2, by (10);
Si+.2 x-x2 . 

3 92 

S1+ (X + X2) ( )2 ;$ 1 + + X,(X+ by(10).


(d) -x 1 (1XX ) + +-. 

To illustrate what happens if you don't keep enough terms during the calculation, observe 
that if in (d).above we only used 1+ x in the right-hand factor, the answer would have been 
1+ x - x2/2, whose x2 term is incorrect. 

6. The quadratic approximation formula. 

(13) f(x) z f(a)- f'(a)(x - a)+ f - a)2, for x a. 

Example 6. Check formulas (10) and (11) by using (13). 

Solution. Since the first two terms of (13) are the linearization, we can build on our earlier 
work, and have only to calculate the quadratic coefficient f"(0)/2. We get 

(a) sinx ; 0 + x +02 2 , since sin"(x) = -sin x = sin"(0) = 0. 

(b) 
f"(0) r(r- )


r -' 2 . 2 as in(10).f (x)= (1+x)r f(x)=r(r -1)(1- x)

The usefulness of (13) is tempered by the fact that it requires calculation of second 
derivatives. This can get rather tedious - function (d) in Example 5 is a good illustration 
- so that using the algebraic techniques is often better. 
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The quadratic approximation formula (13) may be "derived" as follow. We are looking 
for the right choice of coefficients in 

(14) f(s) A + B(z - a) + C(z - a)2, z a. 

Let us denote by Q(x) the polynomial on the right of (14). Then itmakes sense to choose 
the coefficients A, B, C so that f(s) and Q(z) have the same 'alue and the. same first and 
second derivatives at a, i.e., so that 

(15) f(a) = Q(a), f'(a) = Q'(a), f"(a) = Q"(a). 

Since Q'(s) = B + 2C(r - a)and Q"(z)= 2C, equations (15) say that 

(16) f(a) =A, f'(a) =B, f"(a) = 2C; 

these values for A, B, C turn (14) into (13), as promised. Note that the first two terms on 
the right of (13) give the linearization at z = a; thus the quadratic approximation refines 
the linear approximation by adding a quadratic term to it. 

Exercises: Section 2A 


