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Abstract. Markov Chains are introduced by only assuming some knowledge
of the notion of probability. The modelling of a situation in a context of biology
gives the opportunity to students to approach various concepts of probability
theory themselves.

1. Modelling prompting stochastic thinking

At the beginning of a course introducing the basic concepts of probability theory
one is tempted as a teacher to introduce axioms and several models for stochastic
experiments. This approach is classical and well tried.
Often, the modelling is rather mentioned in order to legitimatize parts of a theory
than developed from a topic as a thread. Some of the classical models (e.g. urns
or gambling models) are presented in such a close way to the theory that it seems
almost artificial to call them models. These may also have doubtful consequences
for the students’ intuition as Henze points out ([H]).
In this survey, we suggest a “medias in res”-approach for introducing Markov
chains to mathematically interested high school students. Students of that level
are able to work out models for probability theory themselves. Of course, this
is not meant to replace entirely the classical way the basics of stochastics are
introduced. We aim at encouraging the students to find new models for sev-
eral concepts in probability theory within a Markov chain problem coming from
biology. This topic is chosen both as a challenge making further assumptions
and explanations in the modelling necessary and as an example deserving some
interest in its own right. We have not used elementary gambling models deliber-
ately for the reasons mentioned above. The transfer to those is straightforward
however and seems appropriate depending on the students’ background.
The guideline for them is given here by questions which were given to students
in written or oral form. This concept has been carried out in 4 groups of 15
national winners (coming from the Netherlands, Poland, Hungary, Czech Repub-
lik and Germany) of the mathematical Kangaroo competition and twice with
groups of the Saturday University at the Universities of Bochum and Dortmund,
Germany. The reactions of the students, which were examined with the help of
questionnaires, are illustrated in the last section.
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2. Bacteria cultures

In order to explain what Markov chains are about we consider first a simple
model for the growth of a bacteria culture. Later, we present a more realistic,
but still idealized model which investigates the fluctuation of gene frequency in
a population under the influence of selection.

Assumptions:
Our bacteria culture in a liquid fertilizer should be modelled under the following
rules:

(1) The liquid fertilizer does only provide enough energy for one bacteria cell
to start the duplication process in a time interval. The remaining bacteria
are assumed not to change during that time.

(2) Duplication often fails: On the long run, one expects among the cells
starting the duplication process roughly as many cells to double success-
fully as to die during this process.

(3) The overall number of bacteria is limited (to N , say).

Question 1. Considering the process of duplication of a bacteria cell we want to
attribute probabilities to the case that the cell doubles successfully and to the case
that the cell dies. What does assumption (2) mean in terms of percentages of the
likelihood for duplication? What is the possible range of values of a probability?

Question 2. Under all these assumptions: Which questions about the model do
you regard worthwhile examining?

Temporary Assumption: We take now even a very small number of bacteria
which can exist, at most: N = 4. This is not realistic at all at this stage, but we
hope it helps to illustrate what Markov chains are about.
We want to discuss whether it is possible that the bacteria die out or that they
reach the maximal number possible N = 4 when the duplication process is started
again and again as long as none of these cases is reached.

Question 3. Give an example of a chain of such processes such that the bacteria
never die out but do not reach the maximal number 4 neither.

The number of bacteria in our population can be 0; 1; 2; 3 or 4. We call these the
states. The state at the beginning, i. e. the number of bacteria at the beginning,
is called initial state. The sequences of states in the order of their occurrence are
called path or trajectory. If it is possible to come to a state j from a state i the
state j is called attainable from i. In our example the states 2 or 3 are attainable
from 1 but not from 0, because the state 0 means that the bacteria died out.

Question 4. Give one possible path that the bacteria die out after exactly five
generations. Give a path that bacteria die out after exactly four generations.

Beginning with the initial state 1 we can go up to the final state 4 for example
with the path given in figure 1.
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4          4          4          4          4          4          4          4

0          0          0          0          0          0          0          0

3          3          3          3          3          3          3          3

2          2          2         2           2          2          2          2

1          1          1         1           1          1          1          1

Figure 1. Path of states for the Markov chain

Here, the series ends in state four after seven generations because the maximal
number of bacteria is reached and no duplication process can be started anymore.
The whole fluctuations up to the fifth generation can be displayed in the tree
diagram in figure 2.
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Figure 2. Fluctuation of the number of bacteria

The probabilities for the several transitions between the states are called transi-
tion probabilities.

Question 5. What are the transition probabilities in our example?

This diagram is quite confusing as soon as a bigger number of generations must
be displayed. But there are two properties of transition probabilities which allow
us to handle this in a much clearer way.

(1) The probability of the transition does not depend on the history of the
bacteria culture up to this point. (This property is referred to as homo-
geneity.)
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(2) The transition probability from state i to state j does not depend on the
states before i. (This is called Markov property.)

In order to make clear what these properties mean for our model let us consider
the following questions:

Question 6. (1) What does it mean in respect of the above properties if the
probability of a bacteria to die increases by 1% in each year of its life.

(2) Now let us assume that the energy for a bacteria to duplicate is provided
by some food in the liquid and we have a fixed amount of food at the
beginning of our experiment and no further food will be added during
the experiment. If every bacteria cell now needs some amount of food in
order to survive whether it duplicates or not, what does this means for
the above properties?

Whenever one of the states 0 or 4 is reached no further fluctuations will be
possible because the bacteria died out or do not have enough energy to start the
duplication process. These states are called absorbing.
The transition probabilities together with an initial state describe a Markov
Chain. A more formal way of describing the transitions from one state to another
are transition matrices as they are called. These are actually a very useful tool
when describing more complex Markov chains. Let us have a closer look at our
previous tree diagram.

0                            0                             0                            0                          0

1                           1                              1                            1                          1

2                           2                              2                            2                          2

3                           3                              3                            3                          3      

4                           4                              4                            4                          4

Initial state          Gen. 1                    Gen. 2                   Gen. 3                  Gen. 4

X                          X                             X                           X                         X
0 1 2 3 4

P00=1 P00=1

P10=1/2

P00=1

P10=1/2

P12=1/2 P12=1/2

P21=1/2
P21=1/2

P23=1/2 P23=1/2

P32=1/2

P34=1/2

P44=1

Figure 3. States with corresponding transition probabilities
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Let M be the set of possible situations within a stochastic model. Each fluctua-
tion - i. e. each element in M - is now described by (infinitely many) functions
Xn, n ∈ N, which give the state of the system in generation n. In other words:
If one knows the number of bacteria at every step, one knows everything about
the history of the bacteria.
The range of each of these random variables contains all possible states and thus
is {0; 1; 2; 3; 4}. Let pij denote the probability to pass from state i to state j in
the next single generation, where i, j ∈ M .

Question 7. It is certain that one passes from one state i to any other state
j ∈ M . How is this expressed in terms of the transition probabilities pij?

Question 8. The transition probabilities pij are set up with respect to the next
generation of successors. Try to work out the probabilities to pass from state i
to state j in exactly two generations.

Question 9. Challenge: Try to work out the probabilities to pass from state i
to state j in exactly k generations. (It is meant here to understand what sums
determine the various probabilities not to write these down explicitly. Start with
k = 2, 3, 4 to see a certain pattern.)

Instead of the tree diagram we have a more compact way of gathering this in-
formation by using a matrix containing all transition probabilities. Since we
have five possible states the matrix consists of five rows and five columns. The
transition matrix looks like this:




p00 p01 p02 p03 p04

p10 p11 p12 p13 p14

p20 p21 p22 p23 p24

p30 p31 p32 p33 p34

p40 p41 p42 p43 p44




=




1 0 0 0 0
1
2

0 1
2

0 0
0 1

2
0 1

2
0

0 0 1
2

0 1
2

0 0 0 0 1




.

This matrix gives the probability to go in one step from state i to state j. The
probability to do this in two steps we obtain by multiplying the matrix P by
itself.

Question 10. What does this mean? Give formulae for the entries of the matrix
in two steps with the help of your answer to question 9.

In the same way we obtain the probability to go in n steps from state i to state j
by considering the n-fold product of P with itself, P n. This is why the transition
matrix contains all necessary information to compute the transition probabilities
for every number of steps.

Question 11. Let us consider the following questions for the fluctuations:

(1) What is the probability for reaching 0 or 4 (in an arbitrary number of
steps)?
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Hint: If it is too hard to compute P n, try to find out the probability
with which 0 or 4 are reached in step 1, 2, 3, . . .

(2) How many generations does it take in average until the bacteria dies out?

There are, of course, various ways to change the situation slightly. We just list a
couple of them:

• What happens if the maximal number of bacteria is increased?
• What is the probability that the bacteria die out if the number of bacteria

is unlimited?
• Try to vary the probability that a cell which started the duplication pro-

cess dies!
• Introduce more options for the destiny of a cell in the duplication process:

e. g. the baby cell could die with a certain probability but the mother
cell survives.

3. A genetic model

For a more realistic example of Markov chains we consider an idealized genetic
model introduced by S. Wright (cf. [K-T]). The basic idea of the model is to
investigate the fluctuation of gene frequency in a population under the influence
of selection. Let us in our model disregard effects as mutation or selective forces
for simplicity. The population size is assumed to be fixed throughout every
step in our model. Our population shall contain 2N individuals either having a
type-a genetic characteristic or a type-A characteristic. The next generation is
determined by 2N independent binomial trials. This means that one individual
of the parent generation is randomly chosen and the successor is from the same
genetic type.
Let us assume that the population contains j type-a individuals. All the other
individuals are of type-A.

Question 12. Which probabilistic concept drives this model? What is the prob-
ability that a randomly chosen individual of the parents generation is of type-a
or of type-A respectively?

The question arising in this genetic model is whether one or the other genetic
type can die out at some time and if what is the probability for this. To answer
this question we need an appropriate model for this problem.

Question 13. Argue why it makes sense to use Markov chains for modelling this
problem.

Let us assume for simplicity that our population contains four individuals that
is we have N = 2.

Question 14. (1) What are the possible states of the Markov chain?
(2) Are there absorbing states in this model? If yes, which are the absorbing

states?



MARKOV CHAINS 7

The next step to fully describe the Markov chain are the transition probabilities.

Question 15. Give the transition matrix in this model.

Question 16. Will always one genetic type die out? Or more exactly: Do we
observe with a probability of 1 either of the states 0 or 4?
Hint: Try this again as in the previous section by first computing the matrix P n.

4. The evaluation of the method by students

Teaching mathematically talented and interested students leads to special diffi-
culties for the didactic reconstruction. Although all members of such groups are
bright, a wide range of abilities and knowledge can be expected.
Since students of that kind are often very demanding – especially if they come
to a course voluntarily at some cost of money and leisure time – the group is
often very heterogeneous concerning their age, their mathematical background
and their abilities.
In four groups in the International Kangaroo Maths Camp in September 2002
at Münster, Germany, and during the Saturday University at Bochum and Dort-
mund University, Germany, we asked 102 students after the course to evaluate
their background knowledge in probability theory.
The answers in school marks from 1 (very good) to 5 (poor) were:

Background in probability theory
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Figure 4. Self-assessment of statistical background

The attitudes towards Mathematics and its applications proved also to be quite
diverse. This is also not surprising because there are very diverse reasons for
taking part in Maths competitions. We asked the participants to rate whether
they are much more interested in mathematics than in its applications. The mark
1 stands for a very affirmative answer and the mark 5 for the opposite.
The reactions on the course were unanimously positive. In the following tabular,
some of the answers of the international students are listed. More than numbers,
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More interested in Mathematics than in its applications
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Figure 5. Appreciations of mathematical applications

we think that Mark’s opinion describes best the course. The dutch student said,
he rated the course on Markov chains best because “we had to do a lot ourselves.”
However, the actual numbers rating the course again from 1 = very good to 5 =
poor are:

Table I Evaluation of the course
1 2 3 4 5

The course was well structured 37 49 15 1 0
The examples helped me
to understand the course better 40 41 14 6 1
Theory and applications were presented
in a unified way 26 42 28 3 0
The participants were given
the opportunity to discuss 38 37 21 4 1
There were sufficiently
many exercises for the
participants 21 49 26 5 0

We see clearly that exercises are most important for the students. Also our
approach to present the theory of Markov chains by using applications close to
real life situations have been rated well. Almost 60% of the students said that
the course motivated them very much to get a deeper insight into the theory of
Markov chains.
The approach sketched above shows the following advantages when considering
the methodology of how probability theory is used here:

• Only a very limited amount of knowledge in probability theory needs to
be assumed. Axioms and theory do not play an important role but can
be developed naturally in this context (see, e. g., [R]).
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• In particular, it is not necessary to discuss probabilities with certain con-
ditions as well as a thorough discussion of the notion of stochastic inde-
pendence.

• The exercises aim at encouraging students to construct other problems
themselves. Although the exercises are given a clear aim and a restricted
area of discussion, they do not have the character of finishing the sub-
ject. In the courses where this approach was tried it rather appeared to
stimulate further studies.

With these properties, it offers many opportunities when chosen as the starting
point of a course on probability theory. The following features of such a course
could be linked to this course for instance:

• Various combinational questions and (discrete) distributions.
• The notion of independence of random variables.
• Conditional probabilities.
• Time series.
• Stopping time.
• Measure theory (In the basic example, e. g., there is an infinite path,

which is possible, but which occurs to a probability of 0. Some of our
students discovered this as a phenomenon themselves.)

• Statistics with data analysis - e. g. with records in a casino.

We also had good experiences with the following constructivist’s approach follow-
ing this course: Students should carry out the modelling for a certain situation,
e. g. the expectancy of life of a goat in the desert if a lion is around. Having seen
different models in this course, it seemed to us that students were confident to
find good models and to impose appropriate conditions on the situation to work
these models out.
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10 S. HALVERSCHEID AND P. SIBBERTSEN

(S.H.) Westfälische Wilhelms-Universität, Institut für Didaktik der Mathematik,
Einsteinstr. 62, D-48149 Mnster, Germany
E-mail address: stefan@halverscheid.net

(P.S.) Universität Dortmund, Fachbereich Statistik, Vogelpothsweg 87, D-44227
Dortmund, Germany
E-mail address: sibberts@statistik.uni-dortmund.de


