MIT OpenCourseWare http://ocw.mit.edu

Probability: Random Isn't So Random Summer 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Probability Axioms, Conditional Probability

Vina Nguyen HSSP — July 6, 2008

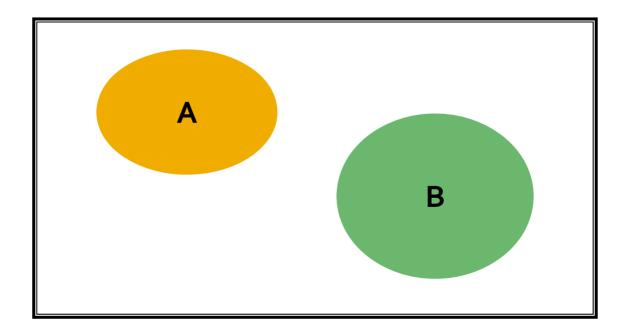
Administrative things

Late registrationClaroline class server

What are the two types of probability?

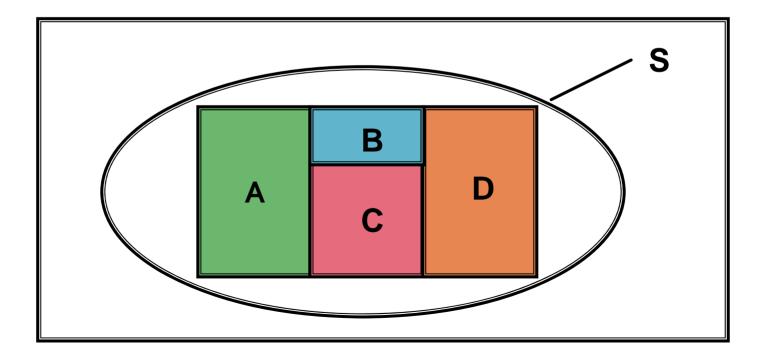
What are the two types of probability?What is a set?

- What are the two types of probability?
- What is a set?
- What's the difference between a sample space and an event?


- What are the two types of probability?
- What is a set?
- What's the difference between a sample space and an event?
- How can you represent sample space?

- What are the two types of probability?
- What is a set?
- What's the difference between a sample space and an event?
- How can you represent sample space?
- What does "U" stand for?

- What are the two types of probability?
- What is a set?
- What's the difference between a sample space and an event?
- How can you represent sample space?
- What does "U" stand for?
- What does P(A^C) mean?


Two More Set Terms

- Disjoint sets
 - No common elements

Two More Set Terms

- Partition (of set S)
 - A collection of disjoint sets whose union is S

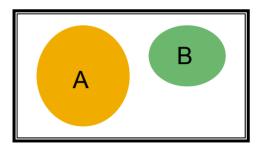
Probability Axioms

- Nonnegativity
 - $P(A) \ge 0$, for every event A

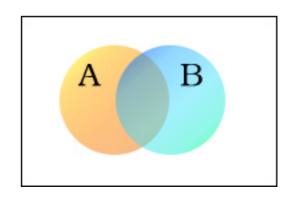
Probability Axioms

Nonnegativity

- $P(A) \ge 0$, for every event A
- Additivity
 - If A and B are two disjoint events,
 - P(A U B) = P(A) + P(B)
 - $P(A \cup B \cup C \cup ...) = P(A) + P(B) + P(C) + ...$


Probability Axioms

Nonnegativity


- $P(A) \ge 0$, for every event A
- Additivity
 - If A and B are two disjoint events,
 - P(A U B) = P(A) + P(B)
 - $P(A \cup B \cup C \cup ...) = P(A) + P(B) + P(C) + ...$
- Normalization
 - P(Ω) = 1

What about overlapping events?

If A and B are disjoint
P (A U B) = P(A) + P(B)

- What if A and B are not disjoint?
 - What is P(A U B)?

Discrete vs. Continuous

- Discrete: **finite** number of possible outcomes
 - Number on a die roll
 - Possible letter grades on a test
- Continuous: infinite number of possible outcomes
 - How long you have to wait for a bus
 - How tall someone can be

Discrete Probability Laws

The probability of any event {s₁, s₂, s₃,..., s_n} is the sum of the probabilities of its elements

$$P(\{s_1, s_2, ..., s_n\}) = P(s_1) + P(s_2) + ... + P(s_n)$$

Discrete Probability Laws

 If the sample space consists of n possible and equally likely outcomes, then the probability of any event A is

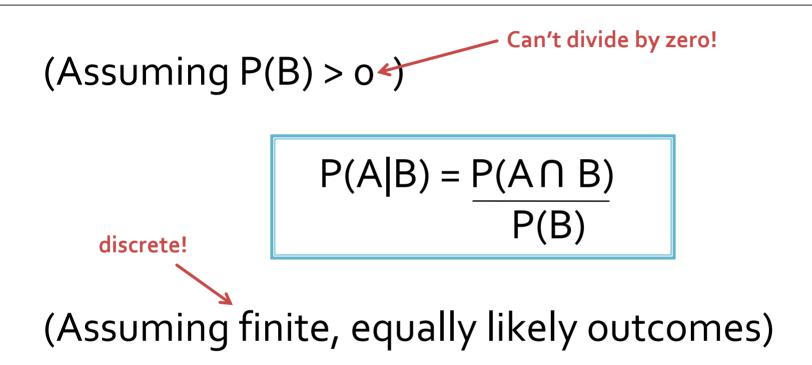
P(A) = number of elements in A

n

- Probability of an event based on partial information
- "Conditional probability of A given B"
- P(A | B)

Example: Die Roll

- Assume all six possible outcomes of a fair die are equally likely
- What is the probability that we rolled a 6, given that the outcome is even?
- P(outcome is 6 | outcome is even)

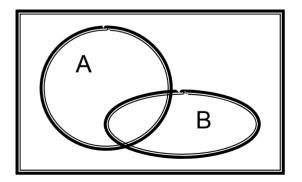

Example: Die Roll

P(outcome = 6 | outcome is even) = ?

- Can't divide by zero!

(Assuming $P(B) > 0 \checkmark$

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$



 $P(A|B) = number of elements of A \cap B$ number of elements of B

Probability
P(A) =
$$P(A \cap \Omega) = P(A) = P(A)$$

P(Ω) 1

Conditional Probability

• $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- If an airplane is present in a certain area, the radar correctly registers its presence with 0.99 probability
- If it's not present, the radar falsely registers it anyway with 0.10 probability
- Assume the airplane is present with probability 0.05

- What is the probability of false alarm?
 - radar registers presence even though airplane is not there
- What is the probability of missed detection?
 radar does not register, but airplane is there

- What is our sample space?
 How aro we going to represent
- How are we going to represent it?

What are the probabilities?

Multiplication Rule

- P(sequence of events) =
 - P(event 1) x P(event 2 | event 1) x P(event 3 | event 1 and event 2)
- $P(A_{1-n}) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)...$

[tree]

Problem #1

- Three cards are drawn from an ordinary 52card decks without replacement (drawn cards do not go back into the deck).
- What's the probability that none of the three cards is a heart?

- There are 4 boys and 12 girls in a class. They are randomly divided into 4 groups of 4.
- What is the probability that each group includes 1 boy?

Monty Hall Problem

- Game show: there are three doors: one has \$1 million behind it, the other two have nothing
- You pick one but it remains unclosed
- The host opens one door that reveals nothing (he knows which door has the prize)
- Before he opens your door (you only can pick one door), he gives you the choice of staying with your door or switching to the third door

Monty Hall Problem

Switch or Stay?

Summary

- More set terms: disjoint, partition
- Probability axioms
- Discrete vs. continuous
- Conditional probability
- Multiplication rule

Card Deck (for your reference)

Image removed due to copyright restrictions. To see an image of entire deck of cards, please click on the link below. http://commons.wikimedia.org/wiki/Image:Cards.jpg