Probability: Random Isn't So Random Summer 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Probability: Random Isn't So Random

Welcome!

- About me
- About you
- About this class
 - For beginners
 - Basic concepts in probability
- Format: lecture, activity, class problems
- Ask questions!

Vina Nguyen HSSP - June 29, 2008

Why study probability?

- To model the uncertain
- To make decisions under uncertainty
- To understand statistical studies
- To make intelligent guesses

Why study probability?

- What's the weather like tomorrow?
- What are the chances of a drug working?
- What kind of customer will buy my product?
- Should I buy a lottery ticket? Two?
- Is it a boy or girl?

So...what is probability?

- Frequency probability
 - How often a result comes up if an experiment is repeated again and again
- Bayesian probability
 - Measure of belief in some unknown event given the evidence

So...what is probability?

Frequency probability

So...what is probability?

Frequency probability

Image courtesy of MIT OpenCourseWare.

So...what is probability?

Frequency probability

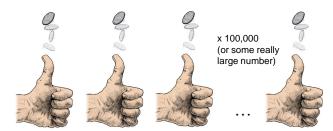


Image courtesy of MIT OpenCourseWare.

Basic Set Theory

- Set: collection of objects
- Example: all the outcomes of a die
 S = {1, 2, 3, 4, 5, 6}
- Element: object in a set
 - 1 is an element of S
 - Unique

So...what is probability?

Frequency probability

Image courtesy of MIT OpenCourseWare.

What's the chance of flipping heads?

- Experiment:
 - Flip a coin a large number of times
 - Observe the percent of heads after each time
- Questions
 - What happens initially?
 - What happens after a while?

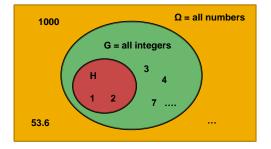
Basic Set Theory

Empty set Ø: no elements

•

Basic Set Theory

- Empty set Ø: no elements
- Set with an infinite # of elements
 - Set of integers: G = {-1, 0, 1, 2,...}


Basic Set Theory

- Empty set Ø: no elements
- Set with an infinite # of elements
 - Set of integers: G = {-1, 0, 1, 2,...}
- Subset H: if every element of H is in G
 - H = {1,2} is a subset of G

Basic Set Theory

- Empty set Ø: no elements
- Set with an infinite # of elements
 Set of integers: G = {-1, 0, 1, 2,...}
- Subset H: if every element of H is in G
 H = {1,2} is a subset of G
- Universal set Ω: contains all elements

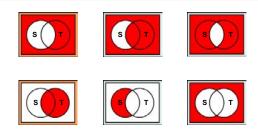
Basic Set Theory

Set Operations

- Complement of S
- all elements in Ω not in S
 S^C
- Union of sets S, T
 - All elements in S or T (or both)S U T
- Intersection of sets S,T
 - All elements in both S and T
 S ∩ T

```
http://en.wikipedia.org/wiki/Image:Venn0001.svg
```

	~	~
	(
	\checkmark	


1

.

Exercises

http://en.wikipedia.org/wiki/Image:Venn0001.svg

1

Probability Models

- Sample space: what are all the possible outcomes?
 - Cannot overlap
 - Must be exhaustive
- Events: subsets of sample space
- Probabilities: how likely events are

Model rolling a die

- Sample space?
- Events?
- Probabilities?

Model rolling a die

- Sample space?
- Events?
- Probabilities?

Ň

What about two dice?

How do we represent sample space?

Outcomes of rolling two dice

How do we represent sample space?

Outcomes of rolling two dice

Summary

- Why we study probability
- Two definitions of probability
- Basic set theory
- Probability models