PAUSE

Summary: The Exponential $y = e^x$

Looking for a function y(x) that equals its own derivative $\frac{dy}{dx}$ A differential equation! We start at x = 0 with y = 1Infinite Series $y(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \left(\frac{x^n}{n!}\right) + \dots$ Take derivative $\frac{dy}{dx} = 0 + 1 + x + \frac{x^2}{2!} + \dots \left(\frac{x^{n-1}}{(n-1)!}\right) + \dots$ Term by term $\frac{dy}{dx}$ agrees with y Limit step = add up this series

 $n! = (n)(n-1)\cdots(1)$ grows much faster than x^n so terms get very small At x = 1 the number y(1) is called e. Set x = 1 in the series to find e $e = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \cdots = 2.71828...$ GOAL Show that y(x) agrees with e^x for all x Series gives powers of eCheck that the series follows the rule $e^x e^X = e^{x+X}$ as in $e^2e^3 = e^5$

Directly multiply series
$$e^x$$
 times e^x to get e^{x+X}
 $(1+x+\frac{1}{2}x^2+\cdots)$ times $(1+X+\frac{1}{2}X^2+\cdots)$ produces the right start
 $1+(x+X)+\frac{1}{2}(x+X)^2+\cdots$ HIGHER TERMS ALSO WORK
Series gives us e^x for EVERY x , not just whole numbers
CHECK $\frac{de^x}{dx} = \lim \frac{e^{x+\Delta x}-e^x}{\Delta x} = e^x \left(\lim \frac{e^{\Delta x}-1}{\Delta x}\right) = e^x$ YES!
SECOND KEY RULE $(e^x)^n = e^{nx}$ for every x and n

Another approach to e^x uses multiplication instead of infinite sum \$1 to start. Interest every day at yearly rate xMultiply 365 times by $\left(1 + \frac{x}{365}\right)$. End year with $\left(1 + \frac{x}{365}\right)^{365}$ Now pay n times in the year. End year with $\left(1 + \frac{x}{n}\right)^n \to \e^x as $n \to \infty$ We are solving $\frac{\Delta y}{\Delta x} = y$ in n short steps $\Delta x = \frac{1}{n}$ Then limit as $\Delta x \to 0$

Practice Questions
1. What is the derivative of
$$\frac{x^{10}}{10!}$$
?
2. How to see that $\frac{x^n}{n!}$ gets small as $n \to \infty$?
Start with $\frac{x}{1}$ and $\frac{x^2}{2}$, possibly big. But we multiply by $\frac{x}{3}, \frac{x}{4}, \cdots$ which gets small.
3. Why is $\frac{1}{e^x}$ the same as e^{-x} ?
4. Why is $e^{-1} = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \cdots$ between $\frac{1}{3}$ and $\frac{1}{2}$? Then $2 < e < 3$.

5. Can you solve
$$\frac{dy}{dx} = y$$
 starting from $y = 3$ at $x = 0$?
Why is $y = 3e^x$ the right answer?
6. Can you solve $\frac{dy}{dx} = 5y$ starting from $y = 1$ at $x = 0$?
Why is $y = e^{5x}$ the right answer?
7. Why does $\frac{e^{\Delta x} - 1}{\Delta x}$ approach 1 as Δx gets smaller?

MIT OpenCourseWare <u>http://ocw.mit.edu</u>

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.