Summary: Max-Min

To find minimum and maximum values of a function y(x)Solve $\frac{dy}{dx} = 0$ to find points x^* where **slope = zero** Test each x^* for a possible minimum or maximum Example $y(x) = x^3 - 12x$ $\frac{dy}{dx} = 3x^2 - 12$ The slope is $\frac{dy}{dx} = 0$ at $x^* = 2$ and $x^* = -2$ At those points y(2) = 8 - 24 = -16 and y(-2) = -8 + 24 = 16

$$x^* = 2$$
 is a minimum Look at $\frac{d}{dx} \left(\frac{dy}{dx}\right) = 2^{nd}$ derivative
 $\frac{d^2y}{dx^2} =$ derivative of $3x^2 - 12$. 2^{nd} derivative is $6x$.
 $\frac{d^2y}{dx^2} > 0$ $\frac{dy}{dx}$ increases slope goes from down to up at x^*
The bending is upwards and this x^* is a **minimum**
 $\frac{d^2y}{dx^2} < 0$ $\frac{dy}{dx}$ decreases slope goes from up to down at x^*
The bending is downwards and x^* is a **maximum**

Find the maximum of $y(x) = \sin x + \cos x$ $\frac{dy}{dx} = \cos x - \sin x$ The slope is zero when $\cos x = \sin x$ at $x^* = 45$ degrees $= \frac{\pi}{4}$ radians That point x^* has $y = \sin \frac{\pi}{4} + \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}$ The second derivative is $\frac{d^2y}{dx^2} = -\sin x - \cos x$ At $x^* = \frac{\pi}{4}$ this is < 0 y is bending down x^* is a maximum

$$\frac{d^2y}{dx^2} > 0 \text{ the curve bends up and } \frac{d^2y}{dx^2} < 0 \text{ the curve bends down}$$

Bending changes at a **point of inflection** where $\frac{d^2y}{dx^2} = 0$
Which x^* gives minimum of $y = (x-1)^2 + (x-2)^2 + (x-6)^2$?
You can write $y = (x^2 - 2x + 1) + (x^2 - 4x + 4) + (x^2 - 12x + 36)$
The slope is $\frac{dy}{dx} = 2x - 2 + 2x - 4 + 2x - 12 = 0$ at minimum
Then $6x^* = 18$ and $x^* = 3$ This is the average of 1, 2, 6
Key step for max/min word problems is to choose meaning for x

Practice Questions

1. Which x^* gives the minimum of $y(x) = x^2 + 2x$? Solve $\frac{dy}{dx} = 0$. 2. Find $\frac{d^2y}{dx^2}$ for $y(x) = x^2 + 2x$. This is > 0 so parabola bends up. 3. Find the maximum height of $y(x) = 2 + 6x - x^2$. Solve $\frac{dy}{dx} = 0$. 4. Find $\frac{d^2y}{dx^2}$ to show that this parabola bends down. 5. For $y(x) = x^4 - 2x^2$ show that $\frac{dy}{dx} = 0$ at x = -1, 0, 1. Find y(-1), y(0), y(-1). 6. Now $\frac{dy}{dx} = 4x^3 - 4x$. What is the second derivative $\frac{d^2y}{dx^2}$?

7. At a minimum point explain why $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} > 0$. 8. Bending down $\left(\frac{d^2y}{dx^2} < 0\right)$ changes to bending up $\left(\frac{d^2y}{dx^2} > 0\right)$ at a point of ______: At this point $\frac{d^2y}{dx^2} = 0$ Does $y = x^2$ have such a point? Does $y = \sin x$ have such a point? 9. Suppose x + X = 12. What is the maximum of x times X? This question asks for the maximum of $y = x(12 - x) = 12x - x^2$. Find where the slope $\frac{dy}{dx} = 12 - 2x$ is zero. What is x times X? MIT OpenCourseWare <u>http://ocw.mit.edu</u>

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.