PAUSE

Summary: Big Picture - Integrals

Key problem Recover the integral y(x) from its derivative $\frac{dy}{dx}$ Find total distance traveled from record of the speed Find total height knowing the slope since the start **Simplest way** Recognize $\frac{dy}{dx}$ as derivative of a known y(x)If $\frac{dy}{dx} = x^3$ then its **integral** y(x) (Function (1)) was $\frac{1}{4}x^4 + C$

If
$$\frac{dy}{dx} = e^x$$
 then $y = e^x + C$
If $\frac{dy}{dx} = e^{2x}$ then $y = \frac{1}{2}e^{2x} + C$
Integral Calculus is the reverse of Differential Calculus
 $y(x) = \int \frac{dy}{dx} dx$ adds up the whole history of slopes $\frac{dy}{dx}$
Integral is like sum Derivative is like difference

Sums
$$y_0$$
 y_1 y_2 y_3 y_4
Differences $y_1 - y_0$ $y_2 - y_1$ $y_3 - y_2$ $y_4 - y_3$
Notice cancellation $(y_1 - y_0) + (y_2 - y_1) = y_2 - y_0$ = change in height
Divide and multiply differences by step size Δx
Sum of $\frac{\Delta y}{\Delta x} \Delta x = \frac{y_1 - y_0}{\Delta x} \Delta x + \frac{y_2 - y_1}{\Delta x} \Delta x = y_2 - y_0$
 $\Delta x \to 0$ Sum changes to integral $\int \frac{dy}{dx} dx = y_{\text{end}} - y_{\text{start}}$

Fundamental Theorem of Calculus
$$\int \frac{dy}{dx} dx = y(x) + C$$

The integral reverses the derivative and brings back $y(x)$
Integration and Differentiation are inverse operations
Opposite order too $\frac{d}{dx} \int_0^x s(t) dt = s(x)$
KEY What is the meaning of an integral $\int_0^x s(t) dt$?

Example Slope s(t) = 6t (increasing speed) Method 1 $y = 3t^2$ has the required derivative 6tMethod 2 The triangle under the graph of s(t) has area $3t^2$ From 0 to t, base = t and height = 6t and area = $\frac{1}{2}t(6t)$. [Most shapes are more difficult! Area comes from integrating s] Method 3 (fundamental) Short time steps each at constant speed

This **limiting step** defines the integral of s(t)In a step Δt , distance is close to $s(t^*)\Delta t$ $t^* =$ starting time for that step $s(t^*) =$ starting speed Not exact because speed changes a little within time Δt Total distance is close to sum of short distances $s(t^*)\Delta t$ Total distance becomes exact as $\Delta t \rightarrow 0$ and sum \rightarrow integral

Practice Questions

1. What functions y(t) have the constant derivative s(t) = 7? 2. What is the area from 0 to t under the graph of s(t) = 7? 3. From t = 0 to 2, find the integral $\int_0^2 7 dt =$ _____. 4. What function y(t) has the derivative s(t) = 7 + 6t? 5. From t = 0 to 2, find area = integral $\int_0^2 (7 + 6t) dt$. 6. At this instant t = 2, what is $\frac{d(\text{area})}{dt}$?

MIT OpenCourseWare <u>http://ocw.mit.edu</u>

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.