Summary: Big Picture - Derivatives

Function (1) Start with a known function y(x)

This tells us the height y above each point x

The problem is to find the "instant slope" at x

This slope s(x) is written $\frac{dy}{dx}$ It is Function (2)

 $\text{KEY:} \quad \frac{\Delta y}{\Delta x} = \frac{y(x+\Delta x) - y(x)}{\Delta x} = \frac{\text{up}}{\text{across}} \text{ approaches } \frac{dy}{dx}$

Instant slope $\frac{dy}{dx}$ for a new function $y = x^3$

First find average slope between x and $x + \Delta x$

Average slope = $\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^3 - x^3}{\Delta x}$

Write $(x + \Delta x)^3 = x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$

Subtract x^3 and divide by Δx

 $\frac{\Delta y}{\Delta x} = \frac{3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3}{\Delta x} = 3x^2 + 3x\Delta x + (\Delta x)^2$

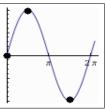
When $\Delta x \to 0$, this becomes $\frac{dy}{dx} = 3x^2$

 $y = x^3$ fits the pattern for $y = x^n$

The slope is $\frac{dy}{dx} = nx^{n-1}$ (one lower power)

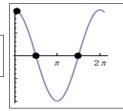
NOTICE:

 $y = Cx^n$ has slope Cnx^{n-1}


Multiply y by $C \to \text{Multiply } \Delta y \text{ by } C \to \text{Multiply } \frac{dy}{dx} \text{ by } C$

The slope of $y = 7x^2$ is $\frac{dy}{dx} = 14x$

Neat Fact: The slope of $y = \sin x$ is $\frac{dy}{dx} = \cos x$


The graphs show this is reasonable

Slope at the start is 1 (to find later)

$$y = \sin x$$

$$slope = \cos x$$

Sine curve climbing \rightarrow Cosine curve > 0

Top of sine curve (flat) \rightarrow Cosine is zero

Sine curve falling \rightarrow Cosine curve < 0

Bottom of sine curve (flat) \rightarrow Cosine back to zero

Practice Questions

- 1. For $y = 2x^3$, what is the average slope $= \frac{\Delta y}{\Delta x}$ from x = 1 to x = 2?
- 2. What is the instant slope of $y = 2x^3$ at x = 1?
- 3. $y = x^n$ has $\frac{dy}{dx} = nx^{n-1}$. What is $\frac{dy}{dx}$ when $y(x) = \frac{1}{x} = x^{-1}$?
- 4. For $y = x^{-1}$, what is the average slope $\frac{\Delta y}{\Delta x}$ from $x = \frac{1}{2}$ to x = 1?
- 5. What is the instant slope of $y = x^{-1}$ at $x = \frac{1}{2}$?
- 6. Suppose the graph of y(x) climbs up to its maximum at x=1

Then it goes downward for x > 1

- 6A. What is the sign of $\frac{dy}{dx}$ for x < 1 and then for x > 1?
- 6B. What is the instant slope at x = 1?
- 7. If $y = \sin x$, write an expression for $\frac{\Delta y}{\Delta x}$ at any point x.

We see later that this $\frac{\Delta y}{\Delta x}$ approaches $\cos x$

MIT OpenCourseWare http://ocw.mit.edu

Resource: Highlights of Calculus

Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.