Summary: Six Functions, Six Rules, Six Theorems

Integrals	Six Functions	Derivatives
$x^{n+1}/(n+1), n \neq -1$	x^n	nx^{n-1}
$-\cos x$	$\sin x$	$\cos x$
sin x	$\cos x$	$-\sin x$
e^{cx}/c	e^{cx}	ce^{cx}
$x \ln x - x$	$\ln x$	1/x
Ramp function	Step function	Delta function
	0	Infinite spike has area = 1

Six Rules of Differential Calculus

1. The derivative of af(x) + bg(x) is $a\frac{df}{dx} + b\frac{dg}{dx}$

2. The derivative of f(x)g(x) is $f(x)\frac{dg}{dx} + g(x)\frac{df}{dx}$ **Product**

3. The derivative of $\frac{f(x)}{g(x)}$ is $\left(g\frac{df}{dx} - f\frac{dg}{dx}\right) / g^2$ Quotient

4. The derivative of f(g(x)) is $\frac{df}{dy}\frac{dy}{dx}$ where y = g(x) Chain

5. The derivative of $x = f^{-1}(y)$ is $\frac{dx}{dy} = \frac{1}{dy/dx}$ Inverse

6. When $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$, what about f(x)/g(x)? **l'Hôpital**

 $\lim \frac{f(x)}{g(x)} = \lim \frac{df/dx}{dg/dx}$ if these limits exist. Normally this is $\frac{f'(a)}{g'(a)}$

Fundamental Theorem of Calculus

If $f(x) = \int_{a}^{x} s(t)dt$ then **derivative of integral** $= \frac{df}{dx} = s(x)$

If $\frac{df}{dx} = s(x)$ then **integral of derivative** $= \int_a^b s(x) dx = f(b) - f(a)$

Both parts assume that s(x) is a continuous function.

All Values Theorem Suppose f(x) is a continuous function for $a \le x \le b$. Then on that interval, f(x) reaches its maximum value M and its minimum m. And f(x) takes all values between m and M (there are no jumps).

Mean Value Theorem If f(x) has a derivative for $a \le x \le b$ then

$$\frac{f(b) - f(a)}{b - a} = \frac{df}{dx}(c)$$
 at some c between a and b

"At some moment c, instant speed = average speed"

Taylor Series Match all the derivatives $f^{(n)} = d^n f/dx^n$ at the basepoint x = a

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (x-a)^n$$

Stopping at $(x-a)^n$ leaves the error $f^{n+1}(c)(x-a)^{n+1}/(n+1)!$

[c is somewhere between a and x] [n = 0 is the Mean Value Theorem]

 $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^n$ The Taylor series looks best around a=0

Binomial Theorem shows Pascal's triangle

$$\begin{array}{ccc}
(1+x) & 1+1x \\
(1+x)^2 & 1+2x+1x^2 \\
(1+x)^3 & 1+3x+3x^2+1x^3 \\
(1+x)^4 & 1+4x+6x^2+4x^3+1x^4
\end{array}$$

$$(1+x)^4$$
 $1+3x+3x+1x$
 $(1+x)^4$ $1+4x+6x^2+4x^3+1x^4$

Those are just the Taylor series for $f(x) = (1+x)^p$ when p = 1, 2, 3, 4

$$f^{(n)}(x) = (1+x)^p \ p(1+x)^{p-1} \ p(p-1)(1+x)^{p-2} \cdots f^{(n)}(0) = 1 \ p \ p(p-1) \cdots$$

Divide by n! to find the Taylor coefficients = **Binomial coefficients**

$$\frac{1}{n!}f^{(n)}(0) = \frac{p(p-1)\cdots(p-n+1)}{n(n-1)\cdots(1)} = \frac{p!}{(p-n)!} = \binom{p}{n}$$

The series stops at x^n when p = n Infinite series for other p

Every
$$(1+x)^p = 1 + px + \frac{p(p-1)}{(2)(1)}x^2 + \frac{p(p-1)(p-2)}{(3)(2)(1)}x^3 + \cdots$$

Practice Questions

- 1. Check that the derivative of $y = x \ln x x$ is $dy/dx = \ln x$.
- 2. The "sign function" is $S(x) = \begin{cases} 1 & \text{for } x \ge 0 \\ -1 & \text{for } x < 0 \end{cases}$

What ramp function F(x) has $\frac{dF}{dx} = S(x)$? F is the integral of S.

Why is the derivative $\frac{dS}{dx} = 2 \text{ delta}(x)$? (Infinite spike at x = 0 with area 2)

- 3. (l'Hôpital) What is the limit of $\frac{2x+3x^2}{5x+7x^2}$ as $x \to 0$? What about $x \to \infty$?
- 4. l'Hôpital's Rule says that $\lim_{x\to 0} \frac{f(x)}{x} = ??$ when f(0) = 0. Here g(x) = x.

5. Derivative is like Difference Integral is like Sum

Difference of sums If $f_n = s_1 + s_2 + \dots + s_n$, what is $f_n - f_{n-1}$? Sums of differences What is $(f_1 - f_0) + (f_2 - f_1) + \dots + (f_n - f_{n-1})$?

Those are the Fundamental Theorems of "Difference Calculus"

- 6. Draw a non-continuous graph for $0 \le x \le 1$ where your function does NOT reach its maximum value.
- 7. For $f(x) = x^2$, which in-between point c gives $\frac{f(5) f(1)}{5 1} = \frac{df}{dx}(c)$?
- 8. If your average speed on the Mass Pike is 75, then at some instant your speedometer will read _____.
- 9. Find three Taylor coefficients A, B, C for $\sqrt{1+x}$ (around x = 0).

$$(1+x)^{\frac{1}{2}} = A + Bx + Cx^2 + \cdots$$

10. Find the Taylor (= Binomial) series for $f = \frac{1}{1+x}$ around x = 0 (p = -1).

MIT OpenCourseWare http://ocw.mit.edu

Resource: Highlights of Calculus

Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.