Product and Quotient Rules

Goal To find the derivative of y = f(x)g(x) from $\frac{df}{dx}$ and $\frac{dg}{dx}$

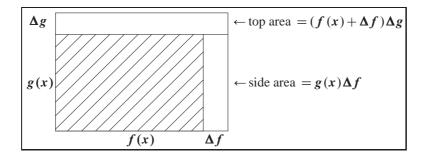
Idea Write $\Delta y = f(x + \Delta x) g(x + \Delta x) - f(x) g(x)$ by separating Δf and Δg

That same Δy is $f(x + \Delta x)[g(x + \Delta x) - g(x)] + g(x)[f(x + \Delta x) - f(x)]$

$$\frac{\Delta y}{\Delta x} = f(x + \Delta x) \frac{\Delta g}{\Delta x} + g(x) \frac{\Delta f}{\Delta x} \quad \text{ Product Rule } \frac{dy}{dx} = f(x) \frac{dg}{dx} + g(x) \frac{df}{dx}$$

Example $y = x^2 \sin x$ Product Rule $\frac{dy}{dx} = x^2 \cos x + 2x \sin x$

A picture shows the two unshaded pieces of $\Delta y = f(x + \Delta x)\Delta g + g(x)\Delta f$



Example $f(x) = x^n$ g(x) = x $y = f(x)g(x) = x^{n+1}$

Product Rule $\frac{dy}{dx} = x^n \frac{dx}{dx} + x \frac{dx^n}{dx} = x^n + xnx^{n-1} = (n+1)x^n$

The correct derivative of x^n leads to the correct derivative of x^{n+1}

Quotient Rule If
$$y = \frac{f(x)}{g(x)}$$
 then $\frac{dy}{dx} = \left(g(x)\frac{df}{dx} - f(x)\frac{dg}{dx}\right) / g^2$

EXAMPLE
$$\frac{d}{dx} \left(\frac{\sin x}{\cos x} \right) = (\cos x (\cos x) - \sin x (-\sin x)) / \cos^2 x$$

This says that $\frac{d}{dx} \tan x = \frac{1}{\cos^2 x} = \sec^2 x$ (Notice $(\cos x)^2 + (\sin x)^2 = 1$)

EXAMPLE
$$\frac{d}{dx}\left(\frac{1}{x^4}\right) = \frac{x^4 \text{ times } 0 - 1 \text{ times } 4x^3}{x^8} = \frac{-4}{x^5}$$
 This is nx^{n-1} Prove the Quotient Rule $\Delta y = \frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)} = \frac{f + \Delta f}{g + \Delta g} - \frac{f}{g}$

Write this
$$\Delta y$$
 as $\frac{g(f + \Delta f) - f(g + \Delta g)}{g(g + \Delta g)} = \frac{g\Delta f - f\Delta g}{g(g + \Delta g)}$

Now divide that Δy by Δx As $\Delta x \rightarrow 0$ we have the Quotient Rule

Practice Questions

- 1. Product Rule: Find the derivative of $y = (x^3)(x^4)$. Simplify and explain.
- 2. Product Rule: Find the derivative of $y = (x^2)(x^{-2})$. Simplify and explain.
- 3. Quotient Rule: Find the derivative of $y = \frac{\cos x}{\sin x}$.
- 4. Quotient Rule: Show that $y = \frac{\sin x}{x}$ has a maximum (zero slope) at x = 0.
- 5. Product and Quotient! Find the derivative of $y = \frac{x \sin x}{\cos x}$.
- 6. g(x) has a minimum when $\frac{dg}{dx} = 0$ and $\frac{d^2g}{dx^2} > 0$ The graph is bending up
 - $y = \frac{1}{g(x)}$ has a *maximum* at that point: Show that $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$

MIT OpenCourseWare http://ocw.mit.edu

Resource: Highlights of Calculus

Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.