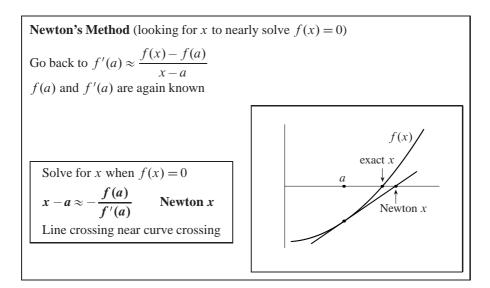


Examples of linear approximation to f(x)1. $f(x) = e^x$ $f(0) = e^0 = 1$ and $f'(0) = e^0 = 1$ are known at a = 0Follow the tangent line $e^x \approx 1 + (x - 0)1 = 1 + x$ 1 + x is the linear part of the series for e^x 2. $f(x) = x^{10}$ and $f'(x) = 10x^9$ f(1) = 1 and f'(1) = 10 known at a = 1Follow the tangent line $x^{10} \approx 1 + (x - 1)10$ near x = 1Take x = 1.1 $(1.1)^{10}$ is approximately 1 + 1 = 2



Linear Approximation and Newton's Method

Examples of Newton's Method Solve $f(x) = x^2 - 1.2 = 0$ 1. a = 1 gives f(a) = 1 - 1.2 = -.2 and f'(a) = 2a = 2Tangent line hits 0 at $x - 1 = -\frac{(-.2)}{2}$ Newton's x will be 1.1 2. For a better x, Newton starts again from that point a = 1.1Now $f(a) = 1.1^2 - 1.2 = .01$ and f'(a) = 2a = 2.2The new tangent line has $x - 1.1 = -\frac{.01}{2.2}$ For this x, x^2 is very close to 1.2

Practice Questions

1. The graph of y = f(a) + (x - a) f'(a) is a straight _____ At x = a the height is y =_____ At x = a the slope is dy/dx =_____ This graph is t _____t to the graph of f(x) at x = aFor $f(x) = x^2$ at a = 3 this linear approximation is y =_____

2. y = f(a) + (x - a) f'(a) has y = 0 when x - a = _____ Instead of the curve f(x) crossing 0, Newton has tangent line y crossing 0 $f(x) = x^3 - 8.12$ at a = 2 has f(a) = _____ and $f'(a) = 3a^2 =$ _____ Newton's method gives $x - 2 = -\frac{f(a)}{f'(a)} =$ _____ This Newton x = 2.01 nearly has $x^3 = 8.12$. It actually has $(2.01)^3 =$ _____. Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.