Growth Rates and Log Graphs

Growth Rates and Log Graphs

In order of fast growth as x gets large x, x^2, x^3 $2^{x}, e^{x}, 10^{x}$ $x!, x^x$ $\log x$ polynomial exponential logarithmic factorial Choose $x = 1000 = 10^3$ so that $\log x = 3$ OK to use $x! \approx \frac{x^3}{a^3}$ $\log 1000 = 3 \quad 10^3, 10^6, 10^9 \quad 10^{300}, 10^{434}, 10^{1000} \quad 10^{2566}, 10^{3000}$ Why is $1000^{1000} = 10^{3000}$? Logarithms are best for big numbers **Logarithms are exponents!** $\log 10^9 = 9$ $\log \log x$ is VERY slow Logarithms 3,6,9 300, 434, 1000 2566,3000 Polynomial growth « Exponential growth « Factorial growth Decay to zero for NEGATIVE powers and exponents $\frac{1}{x^2} = x^{-2}$ decays much more slowly than the exponential $\frac{1}{e^x} = e^{-x}$

Logarithmic scale shows x = 1, 10, 100 equally spaced. NO ZERO!

Question If x = 1, 2, 4, 8 are plotted, what would you see ? **Answer** THEY ARE EQUALLY SPACED TOO!

log-log graphs (log scale up and also across)

If $y = Ax^n$, how to see A and n on the graph?

Plot $\log y$ versus $\log x$ to get a straight line

New type of questionHow quickly does $\frac{\Delta f}{\Delta x}$ approach $\frac{df}{dx}$ as $\Delta x \to 0$?The error $E = \frac{\Delta f}{\Delta x} - \frac{df}{dx}$ will be $E \approx A(\Delta x)^n$ What is n?Usual one-sided $\frac{\Delta f}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$ only has n = 1Centered difference $\frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$ has n = 2Centered is much better than one-sided $E \approx (\Delta x)^2$ vs $E \approx \Delta x$ $\begin{bmatrix} IDEA FOR f(x) = e^x \\ PROJECT & at <math>x = 0 \end{bmatrix}$ One-sided E vs centered EGraph log E vs log Δx Should see slope 1 or 2

Practice Questions

- 1. Does x^{100} grow faster or slower than e^x as x gets large?
- 2. Does $100 \ln x$ grow faster or slower than x as x gets large?
- 3. Put these in increasing order for large *n*:

$$\frac{1}{n}$$
, $n\log n$, $n^{1.1}$, $\frac{10^n}{n!}$

4. Put these in increasing order for large *x*:

$$2^{-x}, e^{-x}, \frac{1}{x^2}, \frac{1}{x^{10}}$$

5. Describe the log-log graph of $y = 10x^5$ (graph log y vs log x) Why don't we see y = 0 at x = 0 on this graph ? What is the slope of the straight line on the log-log graph ? The line crosses the vertical axis when x =_____ and y =____ Then log x = 0 and log y =____ The line crosses the horizontal axis when x =_____ and y = 1Then log x =_____ and log y = 06. Draw the semilog graph (a line) of $y = 10e^x$ (graph log y versus x) 7. That line cross the x = 0 axis at which log y ? What is the slope ? Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.