Differential Equations of Motion

A differential equation for y(t) can involve dy/dt and also d^2y/dt^2 Here are examples with solutions C and D can be any numbers $\frac{d^2y}{dt^2} = -y$ and $\frac{d^2y}{dt^2} = -\omega^2 y$ Solutions $\substack{y=C \cos \omega t + D \sin \omega t \\ y=C \cos \omega t + D \sin \omega t}$ Now include dy/dt and look for a solution method $m\frac{d^2y}{dt^2} + 2r\frac{dy}{dt} + ky = 0$ has a damping term $2r\frac{dy}{dt}$. **Try** $y = e^{\lambda t}$ Substituting $e^{\lambda t}$ gives $m\lambda^2 e^{\lambda t} + 2r\lambda e^{\lambda t} + ke^{\lambda t} = 0$ Cancel $e^{\lambda t}$ to leave the key equation for λ $m\lambda^2 + 2r\lambda + k = 0$ The quadratic formula gives $\lambda = \frac{-r \pm \sqrt{r^2 - km}}{m}$ Two solutions λ_1 and λ_2 **The differential equation is solved by** $y = Ce^{\lambda_1 t} + De^{\lambda_2 t}$ Special case $r^2 = km$ has $\lambda_1 = \lambda_2$ Then t enters $y = Ce^{\lambda_1 t} + Dte^{\lambda_1 t}$

EXAMPLE 1 $\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 8y = 0 \quad m = 1 \text{ and } 2r = 6 \text{ and } k = 8$ $\lambda_1, \lambda_2 = \frac{-r \pm \sqrt{r^2 - km}}{m} \text{ is } -3 \pm \sqrt{9 - 8} \quad \text{Then} \quad \begin{array}{l} \lambda_1 = -2 \\ \lambda_2 = -4 \end{array}$ Solution $y = Ce^{-2t} + De^{-4t}$ Overdamping with no oscillation **EXAMPLE 2** Change to k = 10 $\lambda = -3 \pm \sqrt{9 - 10}$ has $\begin{array}{l} \lambda_1 = -3 + i \\ \lambda_2 = -3 - i \end{array}$ Oscillations from the imaginary part of λ **Decay** from the real part -3Solution $y = Ce^{\lambda_1 t} + De^{\lambda_2 t} = Ce^{(-3+i)t} + De^{(-3-i)t}$ $e^{it} = \cos t + i \sin t$ leads to $y = (C + D)e^{-3t} \cos t + (C - D)e^{-3t} \sin t$ **EXAMPLE 3** Change to k = 9 Now $\lambda = -3, -3$ (repeated root) Solution $y = Ce^{-3t} + Dte^{-3t}$ includes the factor t

Differential Equations of Motion

Practice Questions
1. For $\frac{d^2 y}{dt^2} = 4y$ find two solutions $y = Ce^{at} + De^{bt}$. What are <i>a</i> and <i>b</i> ?
2. For $\frac{d^2 y}{dt^2} = -4y$ find two solutions $y = C \cos \omega t + D \sin \omega t$. What is ω ?
3. For $\frac{d^2 y}{dt^2} = 0 \mathbf{y}$ find two solutions $y = C e^{0t}$ and (???)
4. Put $y = e^{\lambda t}$ into $2\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + y = 0$ to find λ_1 and λ_2 (real numbers)
5. Put $y = e^{\lambda t}$ into $2\frac{d^2 y}{dt^2} + 5\frac{dy}{dt} + 3y = 0$ to find λ_1 and λ_2 (complex numbers)
6. Put $y = e^{\lambda t}$ into $\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + y = 0$ to find λ_1 and λ_2 (equal numbers)
Now $y = Ce^{\lambda_1 t} + Dte^{\lambda_1 t}$. The factor t appears when $\lambda_1 = \lambda_2$

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.