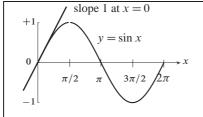
Derivative of the Sine and Cosine

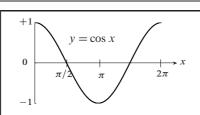
This lecture shows that $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x) = -\sin x$

We have to measure the angle x in **radians** 2π radians = full 360 degrees

All the way around the circle $(2\pi \text{ radians})$ Length $= 2\pi$ when the radius is 1 Part way around the circle (*x* radians)

Length = x when the radius is 1





Slope $\cos x$

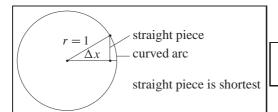
at $x = 0$	slope $1 = \cos 0$
at $x = \pi/2$	slope $0 = \cos \pi/2$
at $x = \pi$	slope $-1 = \cos \pi$

Slope $-\sin x$

at
$$x = 0$$
 slope $= 0 = -\sin 0$
at $x = \pi/2$ slope $-1 = -\sin \pi/2$
at $x = \pi$ slope $= 0 = -\sin \pi$

Problem: $\frac{\Delta y}{\Delta x} = \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$ is not as simple as $\frac{(x + \Delta x)^2 - x^2}{\Delta x}$ Good idea to start at x = 0 Show $\frac{\Delta y}{\Delta x} = \frac{\sin \Delta x}{\Delta x}$ approaches 1

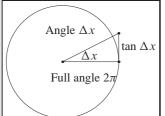
Draw a right triangle with angle Δx to see $\sin \Delta x \leq \Delta x$



straight length = $\sin \Delta x$ **curved length** $= \Delta x$

IDEA $\frac{\sin \Delta x}{\Delta x} < 1$ and $\frac{\sin \Delta x}{\Delta x} > \cos \Delta x$ will **squeeze** $\frac{\sin \Delta x}{\Delta x} \to 1$ as $\Delta x \to 0$

To prove $\frac{\sin \Delta x}{\Delta x} > \cos \Delta x$ which is $\tan \Delta x > \Delta x$ Go to a bigger triangle



The squeeze $\cos \Delta x < \frac{\sin \Delta x}{\Delta x} < 1$ tells us that $\frac{\sin \Delta x}{\Delta x}$ approaches 1

$$\frac{(\sin \Delta x)^2}{(\Delta x)^2} < 1 \text{ means } \frac{(1 - \cos \Delta x)}{\Delta x} (1 + \cos \Delta x) < \Delta x$$

So
$$\frac{1-\cos \Delta x}{\Delta x} \to 0$$
 Cosine curve has slope = 0

For the slope at other x remember a formula from trigonometry: $\sin(x + \Delta x) = \sin x \cos \Delta x + \cos x \sin \Delta x$

We want $\Delta y = \sin(x + \Delta x) - \sin x$ Divide that by Δx

$$\frac{\Delta y}{\Delta x} = (\sin x) \left(\frac{\cos \Delta x - 1}{\Delta x} \right) + (\cos x) \left(\frac{\sin \Delta x}{\Delta x} \right) \quad \text{Now let } \Delta x \to 0$$

In the limit $\frac{dy}{dx} = (\sin x)(0) + (\cos x)(1) = \cos x = \text{Derivative of } \sin x$

For $y = \cos x$ the formula for $\cos(x + \Delta x)$ leads similarly to $\frac{dy}{dx} = -\sin x$

Practice Questions

- 1. What is the slope of $y = \sin x$ at $x = \pi$ and at $x = 2\pi$?
- 2. What is the slope of $y = \cos x$ at $x = \pi/2$ and $x = 3\pi/2$?
- 3. The slope of $(\sin x)^2$ is $2\sin x \cos x$. The slope of $(\cos x)^2$ is $-2\cos x \sin x$. Combined, the slope of $(\sin x)^2 + (\cos x)^2$ is **zero**. Why is this true?
- 4. What is the **second derivative** of $y = \sin x$ (derivative of the derivative)?
- 5. At what angle x does $y = \sin x + \cos x$ have zero slope?

6. Here are amazing infinite series for
$$\sin x$$
 and $\cos x$. $e^{ix} = \cos x + i \sin x$

$$\sin x = \frac{x}{1} - \frac{x^3}{3 \cdot 2 \cdot 1} + \frac{x^5}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} - \cdots \qquad (odd \ powers \ of \ x)$$

$$\cos x = 1 - \frac{x^2}{2 \cdot 1} + \frac{x^4}{4 \cdot 3 \cdot 2 \cdot 1} - \cdots \quad (even powers of x)$$

- 7. Take the derivative of the sine series to see the cosine series.
- 8. Take the derivative of the cosine series to see **minus** the sine series.
- 9. Those series tell us that for small angles $\sin x \approx x$ and $\cos x \approx 1 \frac{1}{2}x^2$. With these approximations check that $(\sin x)^2 + (\cos x)^2$ is close to 1.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Highlights of Calculus

Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.