Chain Rule for the Slope of f(g(x))

$$y = g(x)$$
 $z = f(y)$ \longrightarrow the chain is $z = f(g(x))$
 $y = x^5$ $z = y^4$ \longrightarrow the chain is $z = (x^5)^4 = x^{20}$

Average slope
$$\frac{\Delta z}{\Delta x} = \left(\frac{\Delta z}{\Delta y}\right) \left(\frac{\Delta y}{\Delta x}\right)$$
 Just cancel Δy

Instant slope
$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} =$$
CHAIN RULE (like cancelling dy)

You MUST change y to g(x) in the final answer

Example of chain
$$z = y^4 = (x^5)^4$$
 $\frac{dz}{dy} = 4y^3$ $\frac{dy}{dx} = 5x^4$

Chain rule
$$\frac{dz}{dx} = \left(\frac{dz}{dy}\right) \left(\frac{dy}{dx}\right) = (4y^3)(5x^4) = 20y^3x^4$$

Replace y by
$$x^5$$
 to get only x
$$\frac{dz}{dx} = 20(x^5)^3 x^4 = 20x^{19}$$

CHECK
$$z = (x^5)^4 = x^{20}$$
 does have $\frac{dz}{dx} = 20 x^{19}$

1. Find
$$\frac{dz}{dx}$$
 for $z = \cos(4x)$ Write $y = 4x$ and $z = \cos y$ so $\frac{dz}{dx} = \cos(4x)$

2. Find
$$\frac{dz}{dx}$$
 for $z = (1+4x)^2$ Write $y = 1+4x$ and $z = y^2$ so $\frac{dz}{dx} = 1$

CHECK
$$(1+4x)^2 = 1+8x+16x^2$$
 so $\frac{dz}{dx} =$

Practice Questions

3. Find
$$\frac{dh}{dx}$$
 for $h(x) = (\sin 3x)(\cos 3x)$

Product rule first Then the Chain rule for each factor

$$\frac{dh}{dx} = (\sin 3x) \frac{d}{dx} (\cos 3x) + (\cos 3x) \frac{d}{dx} (\sin 3x)$$
$$= (\sin 3x)(\text{CHAIN}) + (\cos 3x)(\text{CHAIN}) =$$

4. Tough challenge: Find the **second derivative** of z(x) = f(g(x))

FIRST DERIV
$$\frac{dz}{dx} = \left(\frac{dz}{dy}\right) \left(\frac{dy}{dx}\right)$$
 Function of $y(x)$ times function of x

PRODUCT
$$\frac{d^2z}{dx^2} = \left(\frac{dz}{dy}\right)\frac{d}{dx}\left(\frac{dy}{dx}\right) + \left(\frac{dy}{dx}\right)\frac{d}{dx}\left(\frac{dz}{dy}\right)$$

SECOND DERIV
$$\left(\frac{dz}{dy}\right)\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)\left(\frac{d^2z}{dy^2}\right)\left(\frac{dy}{dx}\right) \quad \frac{dy}{dx} \text{ twice!}$$

Check
$$y = x^5$$
 $z = y^4 = x^{20}$ $\frac{dz}{dx} = 20x^{19}$ $\frac{d^2z}{dx^2} = 380x^{18}$

SECOND DERIV
$$(4y^3)(20x^3) + (5x^4)(12y^2)(5x^4)$$
 $80 + 300 = 380 \text{ OK}$

MIT OpenCourseWare http://ocw.mit.edu

Resource: Highlights of Calculus

Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.