5.111 Lecture Summary #15

Readings for today: Sections 3.4, 3.5, 3.6 and 3.7 (Sections 3.4, 3.5, 3.6, 3.7, and 3.8 in 3^{rd} ed) – Valence Bond Theory.

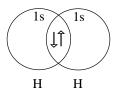
Read for Lecture #16: Sections 6.13, 6.15, 6.16, 6.17, 6.18, and 6.20 (Sections 6.14, 6.16, 6.17, 6.18, 6.19, and 6.21 in 3rd ed) – The Enthalpy of Chemical Change.

Assignment: Problem set #5 (due Friday, October 17th at noon)

Topics: Valence bond theory and hybridization

I. Sigma and pi bonds

II. Hybridization of atomic orbitals


A. sp³ hybridization

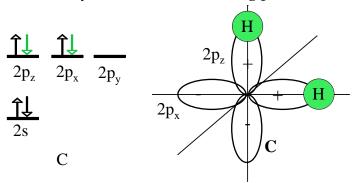
B. sp² hybridization

C. sp hybridization

VALENCE BOND THEORY AND HYBRIDIZATION

In **valence bond theory**, bonds result from the pairing of unpaired electrons in atomic orbitals.

I. SIGMA AND PI BONDS

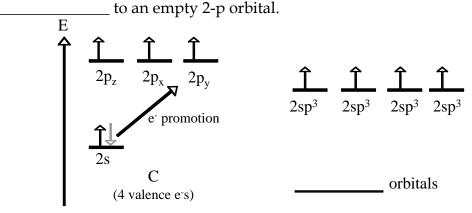

σ (sigma) bond : cylindrically symmetric with	_ nodal plane across the bond axis	•
π (pi) bond: a bond with e-density in two lobes, or	ne on each side of the bond axis.	

A pi bond has a _____ nodal plane along the bond axis.

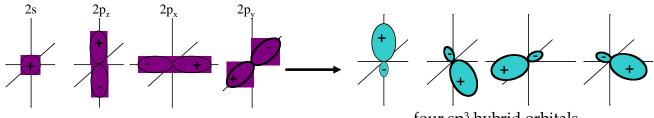
We can describe multiple bonds according to valence-bond theory.

- single bond: _____
- double bond: one σ-bond plus one _____
- triple bond: one σ -bond plus _____ π -bonds

Applying simple VB theory results in the following prediction for methane bonding:

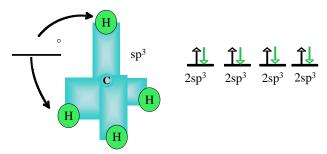


According to this model, the C is bonded to only two H-atoms with an H-C-H bond of _______o. This is NOT what is observed for methane!

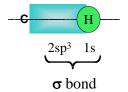

II. HYBRIDIZATION OF ATOMIC ORBITALS

A. sp³ hybridization

A carbon atom has four unpaired electrons available for bonding once a 2s-electron is

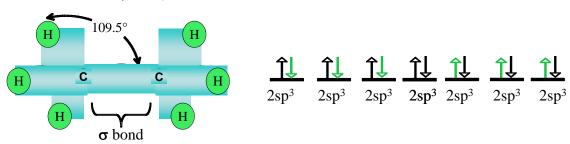


The sp³ hybrid orbitals are equivalent and degenerate. They differ only in their _____ in space.

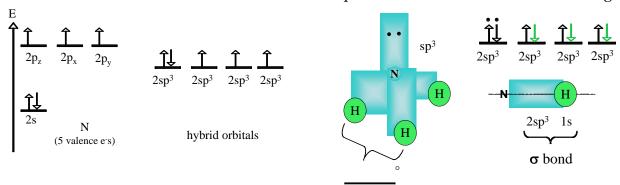


four sp^3 hybrid orbitals

In carbon, each sp³ orbital contains a single electron, allowing four bonds.

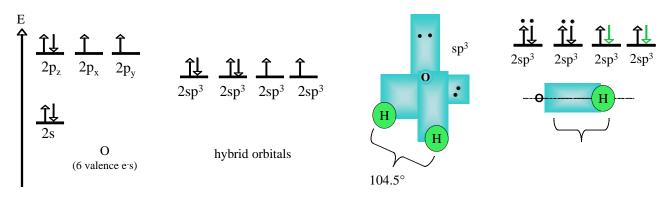


What provides the energy for the initial electron promotion?


Each bond is labeled based on the bond type $(\sigma \text{ or } \pi)$ and atomic orbital composition.

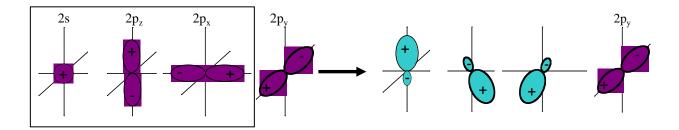
Consider ethane, C₂H₆.

Two bond types in ethane: ______ and ______.

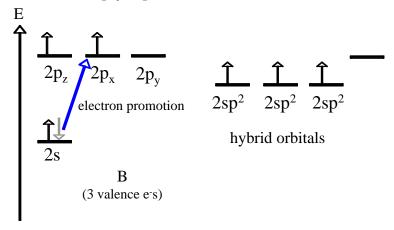

Nitrogen: Electron promotion ______ occur with nitrogen because promotion would not increase the number of unpaired electrons available for bonding.

N-H bond description:

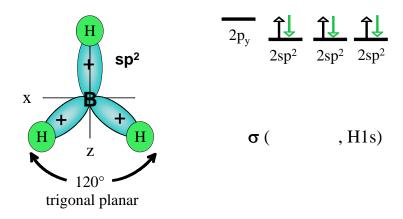
N-atom geometry:


Oxygen: Electron promotion does not occur.

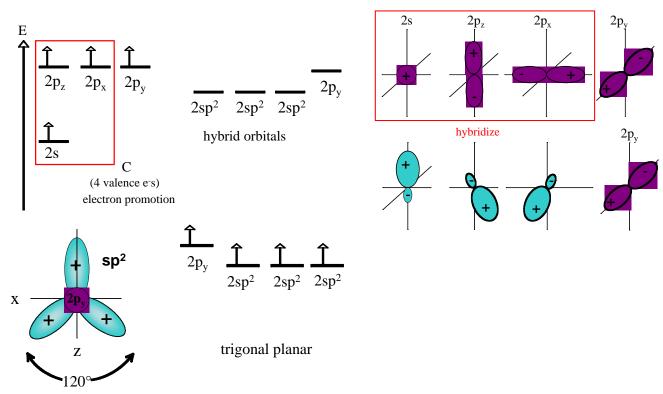
H₂O geometry:


B. sp² hybridization

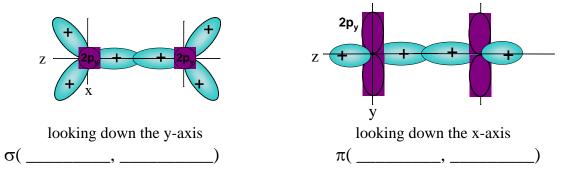
sp² hybrid orbitals form from the combination of one s-orbital and two p-orbitals.

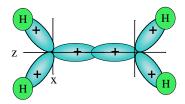

3 hybrid orbitals 1 p-orbital

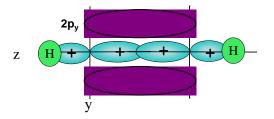
Boron: Boron has 3 unpaired electrons available for bonding once a 2s-electron is promoted to an empty 2-p orbital.



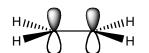
The s-orbital and two of the p-orbitals hybridize to form _____ sp² orbitals.

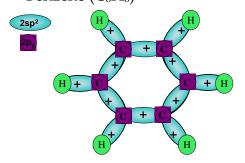

The three sp²-orbitals lie in a ______ to minimize electron repulsion.




Carbon: Carbon can also form sp² hybrid orbitals.

Ethylene (C₂H₄) has a C-C double bond, meaning one _____-bond and 1 ____-bond.





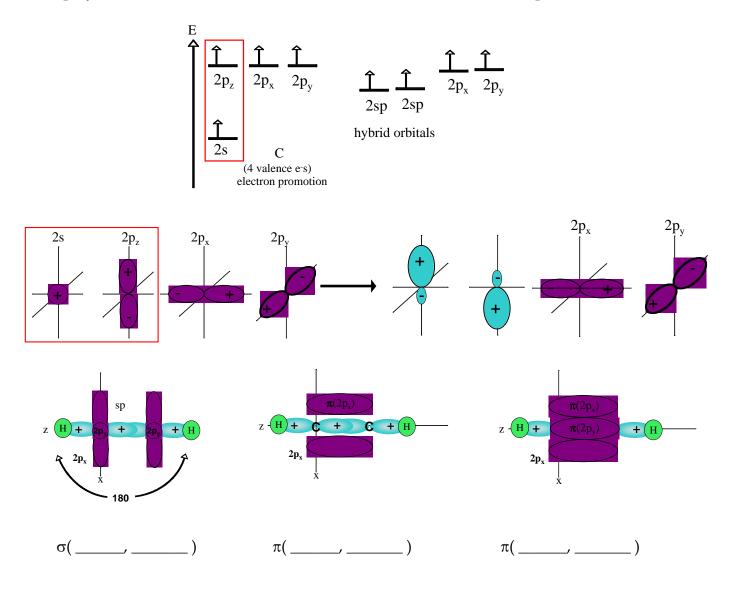
In addition to the C-C double bond, there are four C-H bonds: $\sigma(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$

Note: molecules cannot rotate around a double bond. Rotation would require breaking the pi bond.

Benzene (C₆H₆)

 $\sigma(C2sp^2, C2sp^2)$ bonds

 $\underline{\hspace{1cm}}$ $\sigma(C2sp^2, H1s)$ bonds


 $\pi(C2p_y, C2p_y)$ bonds

$$H \longrightarrow C \longrightarrow C \longrightarrow H$$

In reality, the 6 pi-electrons are ______ over all six carbon atoms in the benzene molecule. Each C-C bond is a _____ bond.

C. sp hybridization

sp hybrid orbitals form from the combination of one s-orbital and 1 p-orbital.

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.