5.111 Lecture Summary #14

- **Readings for today:** Section 3.8 (3.9 in 3rd ed) The Limitations of Lewis's Theory, Section 3.9 (3.10 in 3rd ed) Molecular Orbitals, Section 3.10 (3.11 in 3rd ed) The Electron Configuration of Diatomic Molecules, Section 3.11 (3.12 in 3rd ed) Bonding in Heteronuclear Diatomic Molecules.
- **Read for Lecture #15:** Sections 3.4, 3.5, 3.6 and 3.7 (Sections 3.4, 3.5, 3.6, 3.7, and 3.8 in *3*^{*rd*} *ed*) Valence Bond Theory.

Topics:	Molecular orbital theory
-	I. Bonding and antibonding orbitals
	II. Homonuclear diatomic molecules
	A. Molecules with MO's originating from s orbitals
	B. Molecules with MO's originating from s and p orbitals
	III. Heteronuclear diatomic molecules

MOLECULAR ORBITAL (MO) THEORY

In MO theory, valence electrons are ______ over the entire molecule, not confined to individual atoms or bonds, as in Lewis and valence-bond models.

I. BONDING AND ANTIBONDING ORBITALS

Molecular orbitals (______) of diatomic molecules arise from adding together (**superimposing**) atomic orbitals:

linear combination of atomic orbitals (LCAO) to create a molecular orbital.

Bonding orbitals

σ: designates a molecular orbital that is cylindrically symmetric about the bond axis (with no nodal plane along the bond axis).

 σ_{1s} is a wavefunction.

As with atomic wavefunctions, the physically significant quantity for molecular wavefunctions is probability density (P).

$$P \propto (___)^2 = (___+__)^2 = (1s_a)^2 + (1s_b)^2 + 2(1s_a)(1s_b)$$

interference term

The cross-term represents ______ interference between the two wavefunctions.

The result is a ______ orbital: higher probability density between the nuclei.

Energy of interaction for bonding orbitals. The energy ______ compared to the atomic orbitals!

Molecule is more stable than the individual atoms.

Antibonding orbitals

But since electrons are waves, they can also destructively interfere.

Probability density, $P \propto (___)^2 = (____)^2 = (1s_a)^2 + (1s_b)^2 - 2(1s_a)(1s_b)$ interference term

The cross-term represents ______ interference between the two wavefunctions. The result is lower probability density between the nuclei, an **antibonding** orbital.

Energy of interaction for antibonding orbitals. The energy ______ compared to the atomic orbitals!

σ_{1s}* is an _____ orbital.
Less electron density accumulates between nuclei, exposing nuclei to greater repulsions.

- Creates an effect exactly opposite to a bond. Antibonding is _____ nonbonding.
- An antibonding orbital is raised in energy by approximately the same amount that the bonding orbital is lowered in energy.

II. HOMONUCLEAR DIATOMIC MOLECULES A. Molecules with MO's originating from s orbitals

MO diagram of H₂: In the case of H₂, both electrons are in the σ_{1s} orbital.

Electron configuration of H₂:

MO diagram of He₂:

Electron configuration of He₂:

Because 2 e's went into a bonding orbital and 2 e's went into an antibonding orbital, no net gain or lowering in energy. MO theory predicts He₂ ______ exist because no net gain in E.

 BOND ORDER = ½ (# of bonding electrons - # of antibonding electrons)

 He₂: $(\sigma_{1s})^2(\sigma_{1s}^*)^2$

 bond order = ______ bond

 H₂: $(\sigma_{1s})^2$

 bond order = ______ bond

 Problem Heredenergies (Directory Kin 1002)

Reality: He₂ does exist. 'Discovered' in 1993. Weakest chemical bond known. $\Delta E_d = 0.01 \text{ kJ/mol for He}_2$ $\Delta E_d = 432 \text{ kJ/mol for H}_2$

The MO's formed by LCAO for 2s orbitals are analogous to those formed by 1s.

Note: Bond order can be calculated by considering all electrons or only valence electrons.

Be₂ e⁻ configuration: $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2s}^*)^2$ Bond order (counting all electrons): $\frac{1}{2}() =$ Bond order (counting only valence e⁻s): $\frac{1}{2}() =$

 $\Delta E_d =$ ______kJ/mol - very weak

B. Molecules with MO's originating from s and p orbitals

Bonding MO's formed by LCAO of 2p_x and 2p_y

 π -orbital: Molecular wave function (molecular orbital) with a nodal plane through the ______ axis.

Antibonding MO's formed by LCAO of $2p_x$ and $2p_y$

 π^* -orbitals result from the destructive interference of 2 p_x or p_y orbitals.

Bond order = $\frac{1}{2}$ (4 - 2) = _____

Bond order = $\frac{1}{2}(6 - 2) =$ _____

 $\Delta E_{d} = 599 \text{ kJ/mol for } C_{2} \text{ where } B.O. = 2$ vs. $\Delta E_{d} = 289 \text{ kJ/mol for } B_{2} \text{ where } B.O. = 1$

Bonding MO's formed by LCAO of 2p_z

 σ : MO with no nodal plane along the bond axis.

Antibonding MO's formed by LCAO of 2p_z

destructive interference

Note: The relative energies of the σ_{2pz} orbital compared to the π_{2p} orbitals depends on the Z value of the atoms. If Z is = or > 8, the σ_{2pz} orbital is lower in energy.

MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.