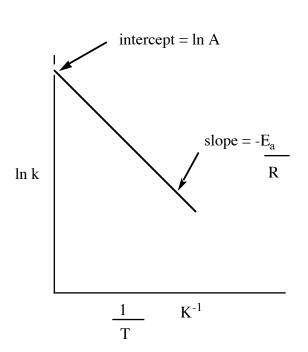
5.111 Lecture 34


<u>Kinetics</u> <u>Topics</u>: Effect of Temperature, Collision Theory, Activated Complex Theory. Chapter 13.11-13.13

Effect of Temperature on Reaction Rates

Gas-Phase

A qualitative observation is that reaction rates tend to increase with increased temperature. Now we will consider the quantitative effect.

In 1889, Svante Arrhenius plotted rate constants (k) versus temperature. He found that plotting ln k versus inverse temperature gave a straight line.

k = rate constant

T = temperature

A = factor A or pre-exponential factor (same units as k)

 $E_a = activation energy$

R = gas constant

$$\ln k = -E_a + \ln A$$

$$\frac{}{RT}$$

$$y = mx + b$$

Rate constants vary _____ with inverse temperature

A and E_a depend on the reaction being studied.

Is factor A temperature dependent?

Is E_a temperature dependent?

$$\ln k = -E_a + \ln A \qquad \text{can also be written} \qquad \ln k = \ln A - E_a \qquad \text{Arrhenius equation}$$
 or
$$k = Ae^{-E_a/RT}$$

What is E_a, activation energy?

Consider
$$CH_3(g) + CH_3(g) \rightarrow C_2H_6(g)$$

2 molecules collide to form product (bimolecular) but every two molecules that collide won't form product. Why?

Only those collisions for which the collision energy exceeds some critical energy (_______ energy) result in a reaction.

At low temperatures, a small fraction will have this much energy.

At higher temperatures, a larger fraction will have this much energy.

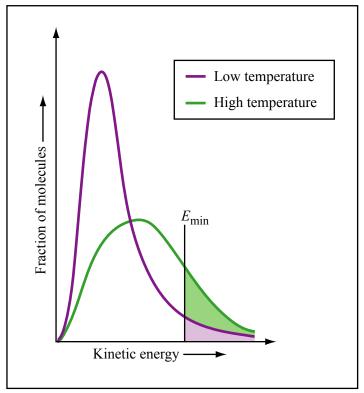


Figure by MIT OpenCourseWare.

Example: Using the activation energy to predict a rate constant

The hydrolysis of sucrose to form a molecule of glucose and a molecule of fructose is part of the digestive process.

$$\begin{split} E_a &= 108 \text{ kJ/mol} \\ k_{obs} &= 1.0 \text{ x } 10^{\text{-3}} \text{ M}^{\text{-1}} \text{s}^{\text{-1}} \text{ at } 37^{\circ}\text{C (normal body temperature)} \end{split}$$

What is k_{obs} at 35°C?

$$\ln k_1 = \ln A - \underbrace{E_a}_{RT_1} \qquad \qquad \ln k_2 = \ln A - \underbrace{E_a}_{RT_2}$$

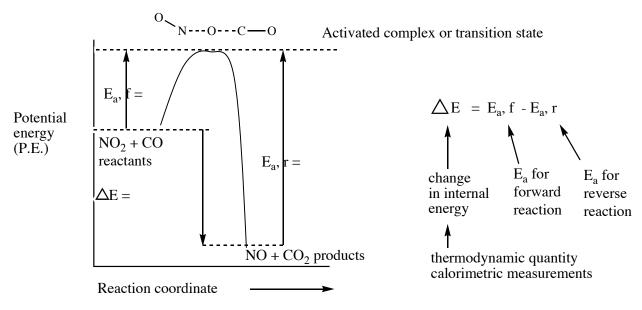
$$\ln k_2 - \ln k_1 = \ln \left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\ln\left(\frac{k_2}{1.0 \times 10^{-3} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}}\right) = \frac{-108 \times 10^3 \,\mathrm{J \, mol}^{-1}}{8.315 \,\mathrm{J} \mathrm{K}^{-1} \,\mathrm{mol}^{-1}} \left(\frac{1}{308 \mathrm{K}} - \frac{1}{310 \,\mathrm{K}}\right)$$

$$k_2 = 7.6 \times 10^{-4} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$$

A large activation energy means that the rate constant is _____ sensitive to changes in temperature.

What do you think happens to the rate of an enzymatic reaction at liquid N₂ temperatures?


The Reaction Coordinate and the Activation Complex

Why is there a critical collision energy, E_a, for the reaction between two molecules?

As two reactant molecules approach each other along a reaction path, their potential energy increases as the bonds within them distort. The encounter results in the formation of an activated complex or transition state, a combination of molecules that can either go on to form products or fall apart again into unchanged reactants.

Only molecules with sufficient energy can overcome the activation energy barrier.

Example
$$NO_2(g) + CO(g)$$
 NO $(g) + CO_2(g)$

Recall from Lecture #17, $\Delta H = \Delta E + \Delta (PV)$

For gases, these quantities differ by 1-2% and for liquids and solids, there is a negligible difference.

For elementary reactions, the activation energy barrier is always positive (some barrier to overcome).

Therefore increasing the temperature ______ the rate of an elementary reaction.

For overall reactions, increasing temperature can decrease or increase the overall rate.

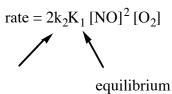
Example 2NO + $O_2 \rightarrow 2NO_2$ with proposed mechanism:

1st step NO + NO
$$\stackrel{k_1}{\rightleftharpoons}$$
 N₂O₂ (Fast, reversible)

2nd step
$$\begin{array}{c} k_2 \\ N_2O_2 \ + O_2 \rightarrow 2NO_2 \\ slow \end{array}$$

rate of product formation =
$$2k_2 [N_2O_2] [O_2]$$

intermediate


Since first step is fast and reversible and the second step is slow, we can solve for $[N_2O_2]$ by setting up an equilibrium expression:

$$K_1 = [N_2O_2] =$$

Substituting:

rate of product formation = $2k_2 [N_2O_2] [O_2]$ =

constant

elementary rate constant

rate increases with temperature

effect of temperature on an equilibrium constant depends on whether the reaction is endothermic or exothermic

Here the reaction is exothermic, so increasing temperature ______the equilibrium constant

 $k_{obs} = 2k_2K_1$ with increased temperature / the rate constant increases and the equilibrium constant decreases

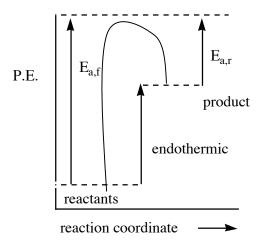
(Magnitude of change depends on $E_{\scriptscriptstyle a}$ (for rate constant) and ΔH (for equilibrium constant.)

For 2NO $+ O_2 \rightleftharpoons 2NO_2$, E_a is a small number and ΔH is a big number Since E_a is small, the rate constant increases only a little Since ΔH is big, the equilibrium constant decreases a lot with temperature Thus, increasing the temperature actually decreases k_{obs} .

$$\ln\left[\frac{k_{Temp2}}{k_{Temp1}}\right] = \frac{-E_a}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right] \qquad \ln\left[\frac{K_{Temp2}}{K_{Temp1}}\right] = \frac{-\Delta H^{\circ}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$$

A large E_a means that k is very sensitive to changes in temperature.

A large ΔH means that K is very sensitive to changes in temperature.


Rate constants always increase with temperature, since E_a is always ______.

Equilibrium constants can increase or decrease with temperature, since ΔH can be (-) or (+).

The magnitude of ΔH indicates the magnitude of the change, and the sign of ΔH indicates the direction of the change.

Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends to adjust to ______ the effect of the stress.

Increasing the temperature...

$$\Delta E$$
 = $E_{a,f} - E_{a,r}$
+ (endo) = big number - small number

P.E. $E_{a,f}$ reactants $E_{a,f}$ products

reaction coordinate

$$\Delta E = E_{a,f} - E_{a,r}$$

- (exo) = small number - large number

increase temperature, easier to overcome $E_{a,f}$. Equilibrium shifts toward products for endothermic reaction.

increase temperature, easier to overcome $E_{a,r}$. Equilibrium shifts toward reactants in the exothermic reaction.

most molecules have enough energy to overcome small barriers increasing temperature allows more molecules to overcome larger barriers

Recall, a large E_a means that the rate constant is very sensitive to changes in temperature.

Big E_a - increasing the temperature makes a _____ difference

Small E_a - increasing the temperature does not make much of a difference.

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.