
FT. SECOND FUNDAMENTAL THEOREM 

1. The Two Fundamental Theorems of Calculus 

The Fundamental Theorem of Calculus really consists of two closely related theorems, 
usually called nowadays (not very imaginatively) the First and Second Fundamental Theo
rems. Of the two, it is the First Fundamental Theorem that is the familiar one used all the 
time. It is the theorem that tells you how to evaluate a definite integral without having to 
go back to its definition as the limit of a sum of rectangles. 

First Fundamental Theorem Let f(x) be continuous on [a, b]. Suppose there is a 
function F(x) such that f(x) = F'(x) . Then 

b b 
(1) f f()dx F(b) F(a). =) = - F(x) 

(The last equality just gives another way of writing F(b) - F(a)that is in widespread use.) 
Still another way of writing the theorem is to observe that F(x) is an antiderivative for f(x), 
or as it-is sometimes called, an indefinite integral for f(x); using the standard notation for 
indefinite integral and the bracket notation given above, the theorem would be written 

(1') f (x) dx = f (x)d . 

Writing the theorem this way makes it look sort of catchy, and more importantly, it avoids 
having to introduce the new symbol F(x) for the antiderivative. 

In contrast with the above theorem, which every calculus student knows, the Second 
Fundamental Theorem is more obscure and seems less useful. The purpose of this chapter is 
to explain it, show its use and importance, and to show how the two theorems are related. 
To start things off, here it is. 

Second Fundamental Theorem. Let f(x) be continuous, andfix a. 

(2) Set F() = f (t)dt; then F'(x) = f(x). 

We begin by interpreting (2) geometrically. Start with the graph of f(t) 
in the ty-plane. Then F(x) represents the area under f(t) between a and 
x; it is a function' of x. Its derivative - the rate of change of area with 
respect to x - is the length of the dark vertical line. This is what (2) says 

e met.ricrnll 

ISimmons calls this function A(x) on p. 207 (2nd edition); this section of Simmons is another presentation 
of much of the material given here. 



Example 1. Verify (2) if f(x) = 2xsin 2 and a= 0. 

Solution. Here we can integrate explicitly by finding an antiderivative (using the first 
fundamental theorem): 

F(W) = 2tsintdt - cos t2 -cosx + 1; 

differentiating by the chain rule, we verify that indeed F'(x) = 2zsinx 2, as predicted by 
(2). O 

*Example2. Let F(z) = 
Ssint 

dt. Find F'(7r/2). 

Solution. Neither integration techniques nor integral tables will produce an explicit 
antiderivative for the function in the integrand. So we cannot use (1). But we can use (2), 
which says that 

sin 7r/2 1F'(R/2) = i/2 /2 
Many students feel the Second Fundamental Theorem is "obvious"; these students are 

confusing it with the similar-looking 

(2') Let F(x) = f f(x) dx; then F'(x) = f(x). 

Indeed, (2') is obvious. The "integral" in it is an indefinite integral, i.e., an antiderivative. 
So what (2') says is: "Let F(x) be an antiderivative for f (x); then F(x) is an antiderivative 
for f(x) - a true statement, but not a very exciting one (logicians call it a tautology.) 

The Second Fundamental Theorem (2) looks almost the same as (2'), but it is actually 
entirely different, because F(x) is defined as a definite integral. The next section, which 
continues the discussion, should help show the difference. 

2. Do functions have antiderivatives? 

The First Fundamental Theorem tells us how to calculate f(x) dx by finding an anti

derivative for f(x). But the theorem isn't so useful if you can't find an antiderivative. Most 
calculus students think for example that e'- has no antiderivative - "the integral isn't 
in the tables", "it can't be integrated" are some of the ways they express this. Even for a 
simple function like 11- , it is not obvious what the antiderivative is. Perhaps it doesn't 
have any? 

The Second Fundamental Theorem provides the answer; it says: 

Every contiziuous function f(x) has an antoiderivative: f(t)dt. 

The antiderivative may not be expressible in terms of elementary functions - this is the 
difficulty with e- "2 - but it always exists. 
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Example 3. Find an antiderivative for 1 

Solution. This doesn't look so easy to do explicitly. But the Second Fundamental Theorem 
says the following function is an antiderivative: 

(3) .. F(z).- dt 

Discussion. You may feel that this doesn't represent progress: the formula for the 
antiderivative is useless. But that's not so: the function F(z) can be calculated by numerical 
integration. It can be programmed into a calculator so that when you press an z-value, the 
screen will display the corresponding value of F(z) to 12 decimal digits. Pressing another 
button will draw the graph of F(z) over any interval on the z-axis that you specify. 

Repeating what we said earlier, the integral in (3) should be carefully distinguished from 

dz - this "integral" is just another notation for the antiderivative, and is 

therefore not a solution to the problem. The integral in (3) by contrast is a perfectly 
definite function, and it does solve the problem of finding an antiderivative.. 

In this case, it turns out that F(z) does have an expression in terms of elementary 
functions. It is 

(4) F(z) = (f+ 1)3/8-4(v +1)1'  3 3 

(You can prove this is correct by differentiating it; the 8/3 is put in to ensure that F(O) = 0, 
as definition (3)requires.) 

The above way of writing F(z) is different from (3). Whether or not it is a better way 
depends on what you want to know about F(.) and what use you want to make of it. For 
instance, 

Is F(z) > 0 when z > 07 

The answer is clearly "yes" if we look at the integral (3), since the integrand is positive; it 
is not at all clear what the answer is if instead we look at (4), because of the - sign. As 
.another example, what is F'(z) ? From (3) the answer is immediate, whereas from (4) you 
would have to calculate for a while - as you will know if you took the trouble to check its 
correctnessl 



3. Defining new functions: In(x) and erf(x). 

One important use of the Second Fundamental Theorem is to define new functions. Cal
culus can then be used to study their properties. 

To illustrate, we consider first an old function: Inz.Let's pretend we know nothing of 
logarithms. We do know that 

SXd = n+l' no-1 . 

However, we know no explicit formula for an antiderivative of 1/x, i.e., when n = -1. 

We therefore use the Second Fundamental Theorem to define an antiderivative of 1/z,
namely 

(5) L(x) = d 

(We use 1 as the lower limit of integration since the integrand is not defined at 0.) What 
are the properties of this function? 

Properties of L(x) = dt 

L-1. L(x) is defined for x > 0 (since 1/t is continuous for t > 0);


L-2. L(1) = 0;


L-3. L'(x) = 1/x, by the Second Fundamental Theorem;


L-4. L"(z) = -I/za, by differentiating 1/x;

L-5. L(x) is increasing for all z > 0, since L'(x) > 0; its graph is concave (i.e., concave


down) since L"(s) > 0; 
L-6. L(ab) =L(a) +L(b). 
Of course, it is this last which is the interesting property; the proof of it is elegant. 

Proof of L-6. We break up the integral defining L(ab) into two parts, the first of which 
is L(a): to do this, we use the ihiterval addition rule (3) in Notes PI.1 . 

(6) L(ab) a -d = =tIT + ab dt 

Comparing with Property L-6, we see we have to show the last integral on the right above 
has the value L(b). To see this, make the change of variable t = au and apply the change 
of'variable rule (see (7), p. PI.2 in these notes). You get successively 

dt adu do

t= au, dt = adu, t au du 

t atu *u 

We have to change the limits on the integral also: t = a and t = ab correspond respectively 
to u = 1,u = b. Thus the rule for changing variable in a definite integral gives 

jabdt du= 
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which proves L-6. O 

Once we have this, the other properties of the logarithm follow in a standard way. 

L-7. L(1/a) = -L(a), since L(1/a)+ L(a) = L(! - a) = L(1) = 0 . 

L-8. lim L(z) = oo; namely, L(z) is incrieasing and L(2") increases without bound as 
n--+oo, since L(2") = nL(2), by Property 6; note that L(2) > 0 since f(z) is increasing. 0 

In our definition of L(x), the number e appears as the unique number such that 

L(e) = = 1. 

Such a number exists by the Intermediate Value Theorem,2 since L(z) is increasing, contin
uous (since it has a derivative), and gets bigger than 1. 

We now turn to a second example of using the Second Fundamental Theorem to define 
a function F(x) - this time, the function will be genuinely new. It is closely related to 
an important function in probability and statistics, the error function erf x. (Statistics
oriented calculators have a button for it.) The two functions differ only by a change of scale 
on the x- and y-axes. There is no simpler or more elementary expression for F(x). 

Example 5. Define a function F(z) by F(z) = e-' dt. 

Sketch the graph of F(x), indicating relative maxima and minima', points of inflection, 
saAmmeatrie. RatimQ+a P(1) ro 1 C&hlJ 

e-t 
Solution. The graph of f(t) = e- t is shown. / 

F(z) is the indicated shaded area under the graph of f(t). x 
2... -. -. .- -. .. .. .. . 

-
F'(x) = e by the Second Fundamental Theorem; since the exponential 
positive, this shows F(z) is increasing for all x, and therefore it has no relative , 
minima. 

F"(z) = -2xe- 2 ; since F"(z) < 0 for z > 0, the graph of F(x) is 
concave (down) when x > 0. Similarly, it is convex (concave up) for z < 0, 
and it h a po =nint of inflection at x 0 

-
F(z) is an odd function. To see this, we note that e 2 is an even function. As the 
picture shows, the.two shaded areas are equal; the one on the left however must be counted 
negatively, since the integration is backwards: if z > 0, then '4ý-=_r 

I F(., A. - I flt~ fIt '& -x IW-• =J-- Jo ),I =j.-- Jof -+.... -WM. -X I 

This shows F(x) is an odd function. 1 e 

F(1) can be estimated as the area under f(t) between 0 and 1; it is

roughly comparable to the area of the trapezoid shown, which about .7.


2Simmons, p. 78 



4. Proof of the two Fundamental Theorems. 

We will give an intuitive argument.for the Second Fundamental Theorem, and then 
deduce the First Fundamental Theorem from the Second. Though the argument for the 
Second Theorem is only suggestive, it has the right ideas in it, and can be easily made 
rigorous if you have available a precise definition of limit.3 

.-	Second Fundamental Theorem: Intuitive Argument

We wish to prove that if f (s) is continuous, then


We calculate F'(s)using the definition of derivative. Let a change by Az, 
andt let. AF be. the corresponding change in F(-s). From the picture. 

AF = F(x + Ax) - F(c) = j f(t) dt 

(9) a f(s)Az, 

since the area of the vertical strip under the curve is approximately the same as the area of 
the rectangle. Dividing, we have 

AF 

where the error in the approximation is bounded by the height of the small curved triangle. 
Since .f(t)is continuous, the error is small compared with f(x), and disappears when we 
pass to the limit as Ax --0; we get therefore 

F'(x) = lim = f(x). 

Note that if f(t) were discontinuous at the point x, the result would not be true; as the 
picture shows, the approximation in (9) would not be true. 

First Fundamental Theorem: Proof4 

We want to show that if f(z) is continuous and f(x)'= F'(x), then 

(10) 	 f(x) dz = F(b)- F(a). 

We begin by defining 

(11) (z)= f (t) dt; then 

G'(x) = f (x), by the Second Fundamental Theorem. 

3A somewhat fuller argument is given in Simmons, Step 1, p. 206-7.

4this same classical reasoning is given in Simmons: Steps' 2 and 3, p. 207.
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Since G'(x) = f(x) = F'(x), we have (G(x) - F(s))' = 0, which implies G(x) - F(x) = C, 
i.e., 

(12) G(x) = F(x) + C, for some constant C. 

To evaluate C, we put x = a in (12); since G(a) = 0, we get 

C = -- F(a). 

Finally, put x = b in equation (12), and use the above value for C: 

G(b) =F(b)- F(a), 
which is exactly (10), in view of the definition of G(x). O 

Remark. Both fundamental theorems say that differentiation and definite integration 
are inverse operations: each undoes what the other does. In the First Fundamental Theorem 
we differentiate, then integrate: 

F(x) -- F'(x) F'(t)dt= F(x) -F(a); 

In the Second Fundamental Theorem, we integrate, then differentiate: 

f(t) ---
f) -W dA d f(t) dt = f(x) . 

In both cases, the theorem says that we end up essentially where we started - only "essen
tially" because of the additive constant in F(x). 

(Of course, differentiation and indefinite integration are also inverse operations, but this 
is trivial - it's just a restating of the definition of indefinite integration.) 

Exercises: Section 3D 


