Derivative: Limit of the Difference Quotient


This section contains documents created from scanned original files and other
documents that could not be made accessible to screen reader software. A "#"
symbol is used to denote such documents.

Lecture Notes

Document PDF
Section 2, Page 1 to page 2

Definition as the limit of a difference quotient.

Instructor: Prof. Jason Starr
Prior Knowledge: None
Back to Top

Practice Problem

Document PDF
Problem 3 (page 2)

Finding the derivative of f(ax) using the difference quotient definition of derivative.

Instructor: Prof. Jason Starr
Prior Knowledge: None
Back to Top

Exam Questions

Document PDF
Problem 1 (page 2)

Finding the derivative of a function by taking the limit of a difference quotient.

Instructor: Prof. Jason Starr
Prior Knowledge: None
Back to Top
Document PDF
Problem 1.3 (page 1) to problem 1.4 (page 1)

Two problems which involve evaluating a derivative using the limit definition of a derivative.

Instructor: Prof. Jason Starr
Prior Knowledge: None
Back to Top

Limit Definition of Derivative (18.01, Fall 2006)

Document PDF
Problem 2 (page 1)

Finding the derivative of x3 using the limit definition of a derivative.

Instructor: Prof. David Jerison
Prior Knowledge: None
Back to Top

Limits and Derivatives (18.01, Fall 2006)

Document PDF
Problem 3 (page 1)

Evaluating a limit by relating it to a derivative.

Instructor: Prof. David Jerison
Prior Knowledge: None
Back to Top

Limit Definition of Derivative (18.01, Fall 2006)

Document PDF
Problem 3 (page 1)

Finding the derivative of 1/x2 using the limit definition of a derivative.

Instructor: Prof. David Jerison
Prior Knowledge: None
Back to Top

Limits and Derivatives (18.01, Fall 2006)

Document PDF
Problem 6 (page 2)

Evaluating two limits by relating them to derivatives.

Instructor: Prof. David Jerison
Prior Knowledge: None
Back to Top

Limit Definition of Derivative (18.01, Fall 2006)

Document PDF
Problem 7 (page 2)

Finding the derivative of a function using the limit definition of a derivative

Instructor: Prof. David Jerison
Prior Knowledge: None
Back to Top
Document PDF - 2.2 MB#
Problem 1C-1 (page 2) to problem 1C-6 (page 3)

Six questions involving the definition of a derivative as the limit of a difference quotient, tangent lines to a function at a point, and drawing graphs of the derivatives of functions given in graph form.

Instructor: Prof. David Jerison
Prior Knowledge: None
Back to Top
Analysis of Graphs Limits of Functions Asymptotic & Unbounded Behavior Continuity: Property of Functions Parametric, Polar & Vector Function Concept of the Derivative Derivative at a Point Derivative as a Function Second Derivatives Applications of Derivatives Computation of Derivatives Interpretations & Properties of Definite Integrals Applications of Integrals Fundamental Theorem of Calculus Applications of Antidifferentiation Numerical Approximations to Definite Integ Concept of Series Series of Constants Taylor Series Graphs of Functions Intuitive Understanding: Limiting Process Calculating Limits Using Algebra Asymptotic Behavior: Infinity Continuity Continuity in Terms of Limits Analysis of Planar Curves Derivative Presented Graphically, Numerically & Analytically Derivative Interpreted as Instantaneous Rate of Change Derivative: Limit of the Difference Quotient Differentiability & Continuity Tangent Line - Curve at a Point & Local Linear Approximation Instantaneous Rate of Change Approximate Rate of Change Characteristics of f & f Relationship Between Behavior of f & Sign of f Mean Value Theorem & Geometric Consequences Characteristics: Graphs of f, f & f Relationship Between Concavity of f & Sign of f'' Points of Inflection - Concavity Changes Analysis of Curves Applications of Derivatives Optimization: Absolute & Relative Extrema Modeling Rates of Change Implicit Differentiation & Derivatives of Inverse Functions Derivative as a Rate of Change l'Hôpital's Rule Geometric Interpretation of Differential Equations Derivatives of Basic Functions Rules: Derivative of Sums, Products & Quotients of Functions Chain Rule & Implicit Differentiation Derivatives: Parametric, Polar & Vector Functions Definite Integral - Limit of Riemann Sums Rate of Change of a Quantity/Change of Quantity over Interval Properties of Definite Integrals Appropriate Integrals Evaluate Definite Integrals Representation of Specific Antiderivatives Antiderivatives From Derivatives of Basic Functions Integration by Substitution, Parts & Partial Fractions Improper Integrals Separable Equations & Modeling Riemann & Trapezoidal Sums Series, Convergence, Divergence Motivating Examples Geometric Series with Applications The Harmonic Series Alternating Series - Error Bound Series as Riemann Sums & the Integral Test Ratio Test - Convergence/Divergence Comparison Test Taylor Polynomial Approximation Maclaurin & Taylor Series Maclaurin Series for Basic Functions Manipulating Taylor Series Power Series Defining Functions Radius/Interval of Convergence Lagrange Error Bound