MIT

Traffic Calming

Massachusetts Institute of Technology

Urban Transportation Planning MIT Course 1.252j/11.380j Fall 2006

Mikel Murga, MIT Lecturer and Research Associate

- Why traffic calming?
- Traffic calming, how?
- Techniques
- Design Criteria
- The Process

- The faster you go, the higher the probability of an accident, as:
 - Your vision focus narrows with speed
 - For a given reaction time, distance covered is proportional to speed
 - The faster you go, the longer the stopping distance

MIT Why Traffic Calming?

- The faster you go, the higher the seriousness of an accident
 - For instance, the kinetic energy of an automobile (1.2 tons at 35 mph) is at least 150 times higher than the one of a pedestrian (180 pounds at 3 mph)
 - Such a collision at:
 - 20 mph, means bone fractures and concussions
 - In the range 30-40 mph, high probability of either death or permanent disability

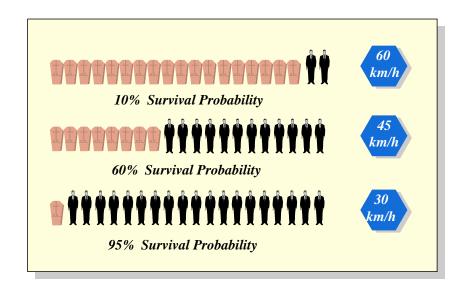


Figure by MIT OCW.

- To avoid segregation of public spaces and maintain its livability
- Underpasses, skywalks and other "solutions", do not provide "eyes on the street"

- When traffic is tamed, a good walking environment results
- Walkers enjoy a wide range of sensory experiences
- When most people drive, the buildings end up lacking the detail and relief that people need and enjoy
- People attract more people

MIT Traffic Calming: How?

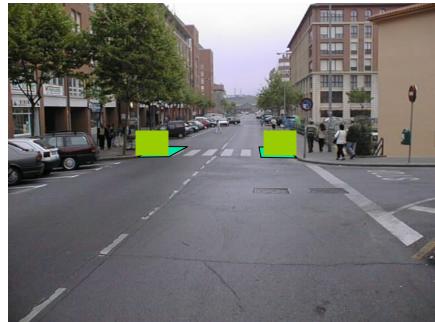
Massachusetts Institute of Technology

Do you think this is sufficient in spite of its strict precision in Km/hour?

Frederick P. Salvucci and Mikel Murga

MIT Traffic Calming: How?

- When you drive at 30 mph, you tend to focus your sight far ahead
- This means that you narrow the sight area
- You fail to see the surroundings


MIT Traffic Calming: How?

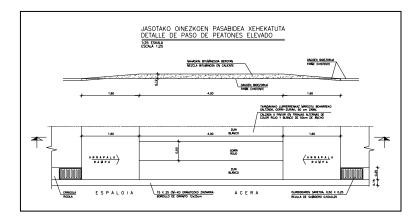
 But if you drive at 20 mph, you start to see what lies on the sides

MIT Traffic Calming: How?

- The basic idea is to change the perceptions of the driver through the introduction of new physical features
- These self-enforcing features tend to break the infinite continuity that encourages speed with or without speed warnings

MIT Traffic Calming: How?

- Raised crosswalks
- Narrower pavement widths
- Chicanes with urban furniture or parking
- Changes in the pavement texture
- Mini-roundabouts
- Cul-de-sacs
- Eliminating some movements
- Civilized green waves


Traffic Calming: How? Raised crosswalks

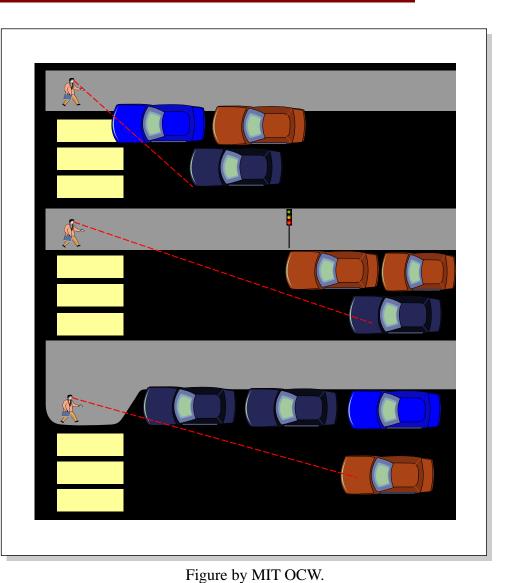
- Double function: good for pedestrians... and cars
- You accommodate to gradient:
 - 7% for 40-45 km/hr
 - 10% for 30 km/hr
 - 12% for 25 km/hr or less
- Every 60-100 meters plus proper warning
- The top table needs a minimum width, specially for buses
- Automatic balancing of the carpedestrian relationship

Traffic Calming: How? **MIT** Raised crosswalks

Traffic Calming: How? Raised intersections

Massachusetts Institute of Technology

The automobile finds itself in neutral grounds...

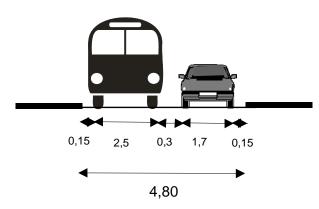


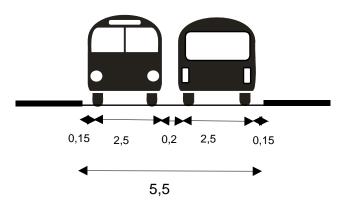
Traffic Calming: How?

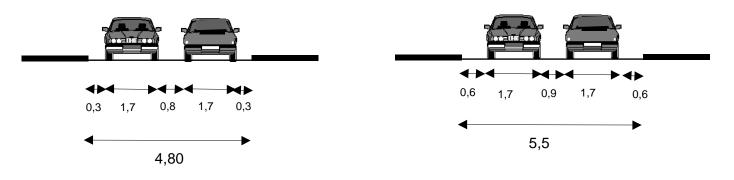
Massachusetts Institute of Technology

Pros:

- Decrease exposure
- Higher visibility specially for children
- Easy implementation




15


MIT Traffic Calming: How? Narrower pavement widths

Traffic Calming: How?

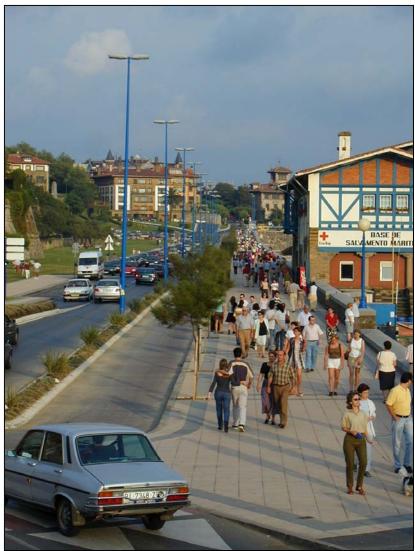
Frederick P. Salvucci and Mikel Murga

MIT Traffic Calming: How? Narrower pavement widths

Massachusetts Institute of Technology

Nothing like a bucket of paint

MITTraffic Calming: How?Narrowing the pavement


Massachusetts Institute of Technology

You could rearrange parking

Frederick P. Salvucci and Mikel Murga

Traffic Calming: How? Eliminating road lanes

Frederick P. Salvucci and Mikel Murga

Traffic Calming: How? Eliminating road lanes

Massachusetts Institute of Technology

From cages to family outings

Frederick P. Salvucci and Mikel Murga

MIT Traffic Calming: How? Mini-roundabouts

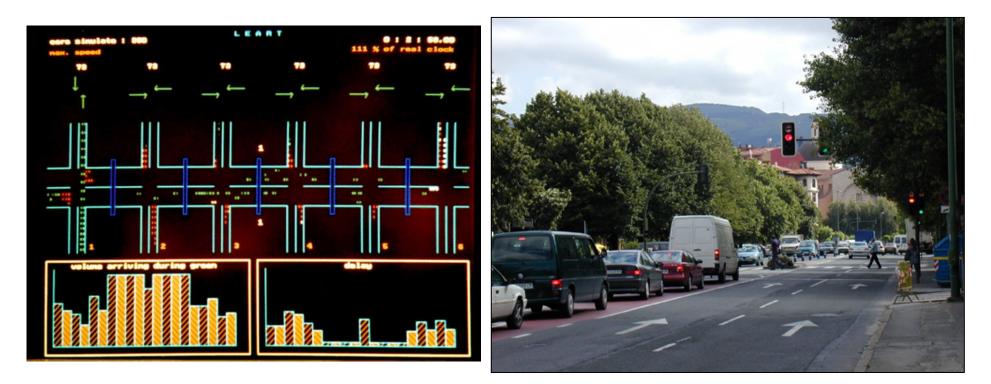
Massachusetts Institute of Technology

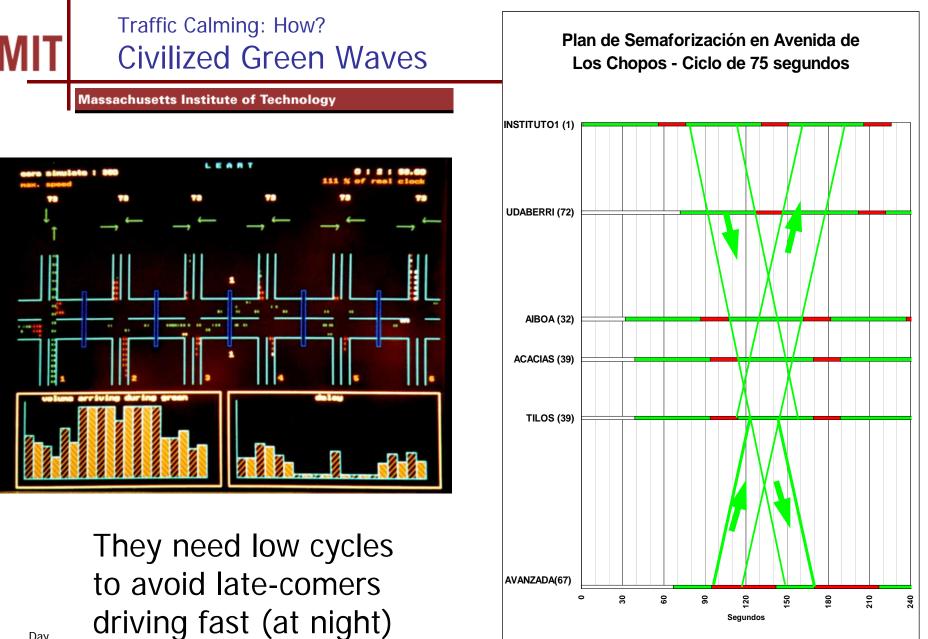
They work! ...even for high flows

Frederick P. Salvucci and Mikel Murga

MITTraffic Calming: How?Or all of the above

Traffic Calming: How? Eliminating son


Eliminating some movements (i.e. in a roundabout)


MIT Traffic Calming: How? Civilized Green Waves

Massachusetts Institute of Technology

They need low cycles to avoid late-comers driving fast (at night)

26

Frederick P. Salvucci and Mikel Murga

Traffic Calming: How?

Massachusetts Institute of Technology

Plus often changes in horizontal alignment, refuge islands, narrowing the road width...

MIT Traffic Calming: How? *Civilized* Pedestrian signals

- Longer phase times for pedestrians
- Lower total cycles
- Green waves for pedestrian movement

MITTraffic Calming: How?MITNarrowing the pavement

Massachusetts Institute of Technology

Beyond traffic calming to improve public spaces:

 New urban furniture, including trees

- Not an end by itself, just the means to an end
- It must be accompanied by other measures to improve the urban environment so as to encourage more pedestrians
- ...Although the real goal is to bring pedestrians to a stop

- Other important issues:
 - Location
 - Self-enforcement
 - Liability
 - Reversibility
 - Public participation
 - Overall traffic scheme
 - Traffic deviated to other areas

MIT Location

Massachusetts Institute of Technology

Sensitive areas:

- Schools
- Transit stations
- Senior citizens
- Areas with high accident rates
- High speeds eg. transition areas from the expressway into the urban network

Some Bibliography

- Canadian Guide to Neighbourhood Traffic Calming - TAC-ATC/ITF 1998
- **Civilised Streets Carmen** Hass-Klau et al ET&P, 1992
- "Guide Les ralentisseurs de type dos d'ane et trapezoidal" CERTU, 1994

- "Guide Zone 30" CETUR, 1992
- "Pedestrian and City Traffic" Carmen Hass-Klau, 1990
- "City Routes, City Rights" Conserv Law Found, 1998
- "Reduire la Vitesse en Agglomeration" CETUR 1989
- "Voirie Urbaine" CFTUR 1988
- ... plus publications by Jan Gehl, Jane Jacobs, Kevin Lynch, George Whyte, etc..

MIT Traffic Calming: The Process

MIT Look for an easy winner...

Massachusetts Institute of Technology

Nothing like a school

Frederick P. Salvucci and Mikel Murga

MIT Once they try...

Massachusetts Institute of Technology

Bulb-outs "... everywhere

Today a pedestrianized plaza

Frederick P. Salvucci and Mikel Murga

MIT ... they will ask for more Massachusetts Institute of Technology

- There is not enough money to accommodate all the requests
- The best result is the change in behavioral patterns

Always go easy at the beginning...

Massachusetts Institute of Technology

Frederick P. Salvucci and Mikel Murga

MIT

Always go easy at the beginning...

Massachusetts Institute of Technology

Frederick P. Salvucci and Mikel Murga

MIT

MIT In a nutshell, ten rules

Massachusetts Institute of Technology

- 1. Every change is hard to implement
- 2. Start by the easiest job
- 3. You need allies
- 4. You have to minimize risks
- 5. Technical competence a must
- 6. Not isolated measures, but packages
- 7. Short term results, a must
- 8. But don't forget to plant a few seeds
- 9. Everyone sees things differently
- 10. Success is hard to measure

But if you want, you can!