

Massachusetts Institute of Technology

Urban Transportation Planning MIT Course 1.252j/11.540j Fall 2006

Mikel Murga, MIT Lecturer and Research Associate

Scope

- Summary
- TeleComs:
 - Enabling Technologies
- ITS:
 - Concept and Goals
 - Automobile Oriented
 - Transit Oriented
- Policy Arena:
 - From deployment of new technologies towards organizational changes

Summary: ITS in a nutshell

Massachusetts Institute of Technology

Objectives:

- Originally to address road congestion
- Later, transit, safety, logistics, demand management, security...
- Intermodal perspective

Technology:

- TeleComs as the starting point
- Technical compatibility and integration
- Market driven
- Promises and realities
- Often, solutions in search of problems

Summary: ITS in a nutshell

Massachusetts Institute of Technology

Policy Arena:

- Need to share and exchange information
- Institutional cooperation
- From a tactical tool towards a strategic approach
- Recent boost on behalf of road safety

Summary: ITS in a nutshell

Massachusetts Institute of Technology

Main applications in the US:

- ATIS:
 - Advanced Traveler Information Systems
- AVCS
 - Advanced Vehicle Control Systems
- CVO:
 - Commercial Vehicle Operations
- APTS:
 - Advanced Public Transportation Systems
- ARTS:
 - Advanced Rural Transportation Systems

Ref: "Perspectives on Intelligent Transportation Systems" by Joseph M. Sussman, Springer 2005

TeleComs: Telecommunications + Computing sectors

- Fastest growing sector in Europe
- 5% GDP: 4 million employed
- 300,000 new jobs ('95 '97)
- More to come:
 - Audio visual (3G video services)
 - New mobile services, as....
- More cellular phones than computers!

Telecom jobs are booming

Massachusetts Institute of Technology

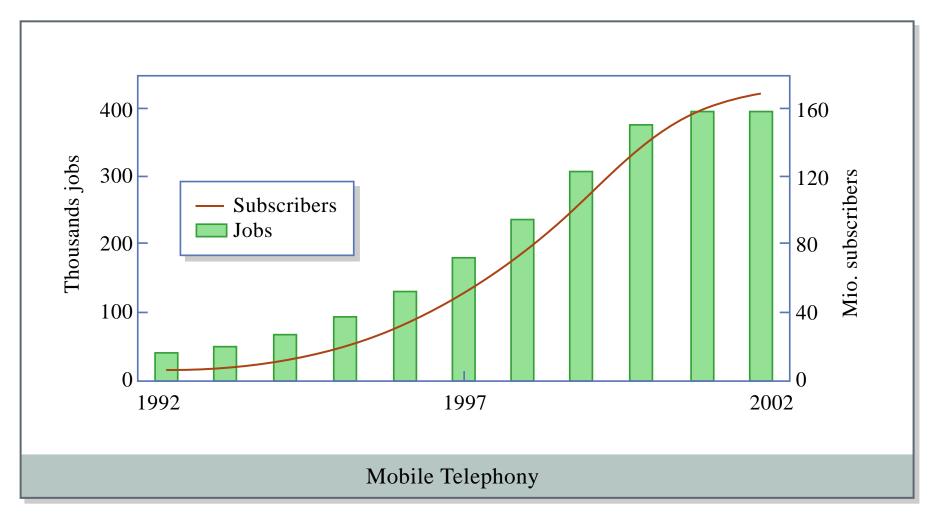
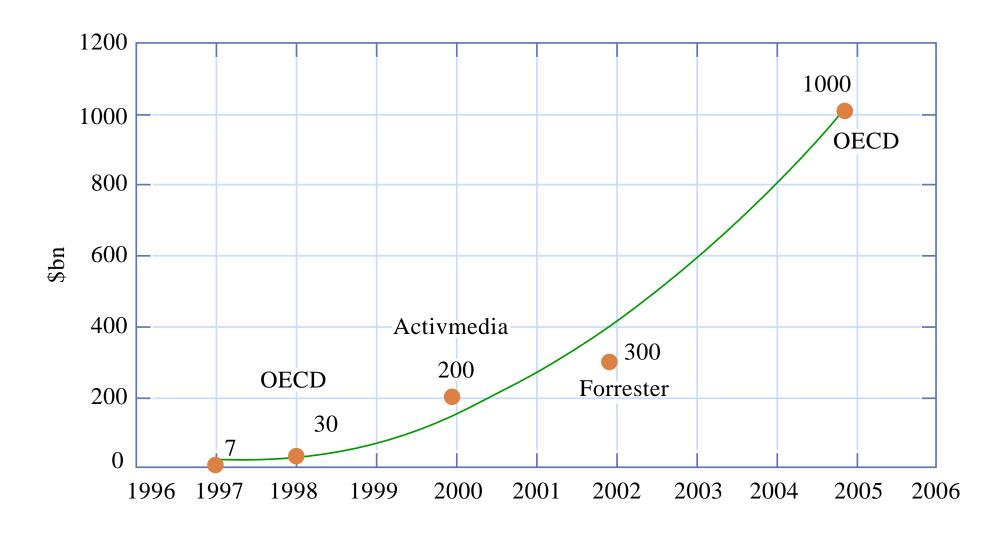



Figure by MIT OCW.

Projected E-commerce growth

MIT

Technology evolution

Massachusetts Institute of Technology

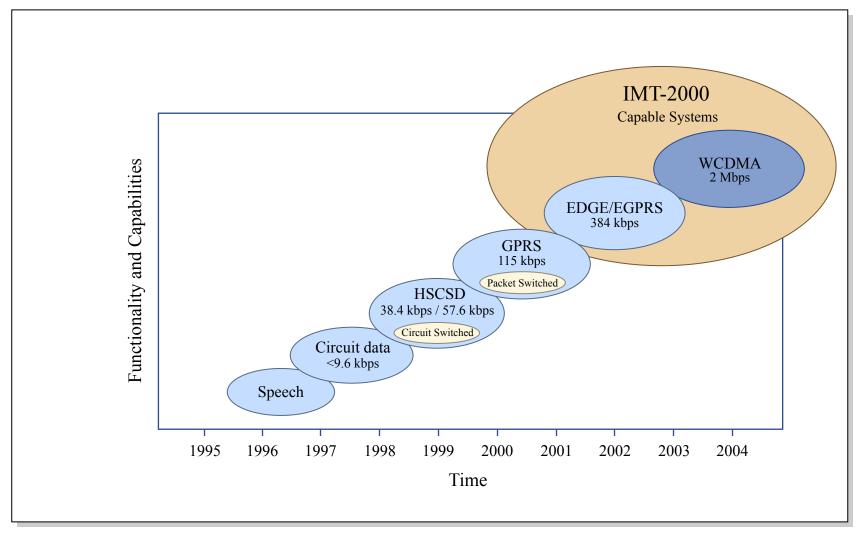


Figure by MIT OCW.

MIT

Technology evolution

- SMS
- SIM Toolkit
- WAP
- GPRS
- Bluetooth
- Terminals
- Smartcards
- E-commerce
- Security
- Positioning

The challenges of telecom providers...

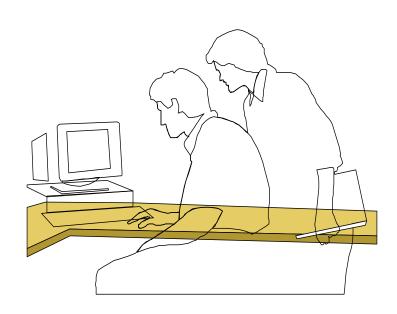
- Mobility taking services from the desktop to the pocket for the ultimate in convenience
- Towards ubiquitous computing
- Security, payment, browsing and devices are key technology

Secure electronic financial transactions:

- Business-to-business, retail and administrative transactions
- Billing, payment, accounting
- Anonymous small payments .. (Credit card usage at Newbury St for parkmeters)
- Reliable, tamper-proof smart cards and personal tokens – (using phones to pay for transit in Japan)

Europe Today

- Leads in:
 - Mobile communications
 - Digital television
 - Digital local access
 - Electronic payments and smart cards
- Lags in:
 - Corporate IT investment
 - Use of the Internet
 - Electronic commerce
 - PC industrial and technology development


What sort of Information Society?

- EU Desideratum:
 - Employment rich
 - Socially inclusive
 - Economically stable
 - Culturally diverse
 - Environmentally sustainable

From TeleComs to: New ways to work

- Flexibility in time and place
- Better use of skills
- Reduced investment for new job creation
- Reduced overhead costs
- Financial viability for more new kinds of work
- Greater responsiveness

MIT

A Rapidly Flattening World

Massachusetts Institute of Technology

"The result ... is the creation of a global network, Webenabled playing field that allows for multiple forms of collaboration – sharing knowledge and work – in real time, without regard to geography, distance, or in the future, even language"

Thomas Friedman, "The World is Flat", NY 2005

From TeleComs to: Teamwork and tele-work:

- Teamwork across borders and timezones
- Real-time and asynchronous
- Linking different types of workplaces
- Intra-company and inter-company
- New tools and standards

ITS: Intelligent Transport Services

(As Part of the Information Society)

Massachusetts Institute of Technology

ITS: Control, management and information tools aimed to improve the efficiency, safety and quality of service of the transportation system

eEurope: Main Targets

- Key challenge is to meet the growing demand for mobility within the finite transport networks
- Congestion in road transport
 - Speed up the development and deployment of Intelligent Transport Systems
- Safety of road, rail, air and maritime transport
 - Active safety systems in vehicles
 - Enhanced 112 with location information (equiv to US 911)

eEurope Targets: ITS Deployment

- Timely and reliable information and guidance services (in real time, pre-trip/on trip)
- Effective congestion and demand management strategies (to reduce delays and to improve the environment, safety and intermodality)
- Efficient incident and emergency management (detection, verification, response)

eEurope Targets: Road Safety

- Safety of road:
 - New emphasis on account of 42,000 yearly deaths
 - All new cars sold in Europe equipped with more efficient active safety enhancing systems
- All citizens on the move throughout Europe should have access to:
 - call localization and
 - emergency services through the 112 number, recognizing the language challenge

Massachusetts Institute of Technology

Urban Traffic:

- Traffic Signals
- Monitoring throughput:
 - Recommended speeds
 - Ramp metering
- Incident Management
- Signal priority for:
 - Emergency vehicles
 - Public transport

Massachusetts Institute of Technology

Real-time Information:

- Automobile traffic
- Public transport
- Parking
- Airport arrivals/departures
- Points of interest (POI)
- News, banking, stocks...

Massachusetts Institute of Technology

Payment sytems:

- Tolls
- Transit fares
- Parking
- Electronic purse
- Mobile-business

Massachusetts Institute of Technology

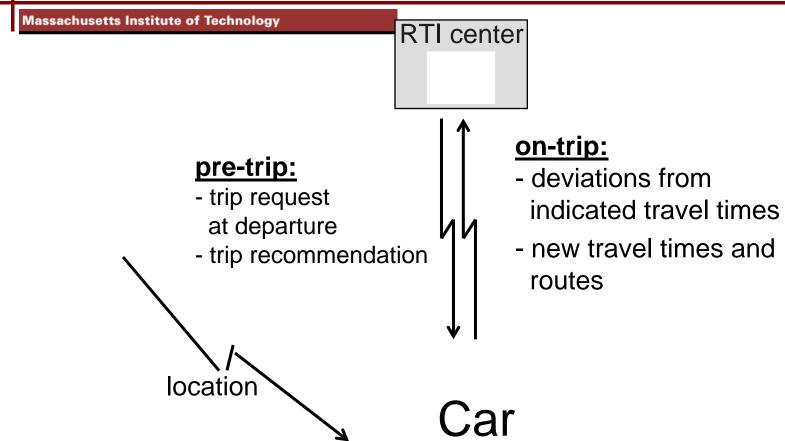
Urban Goods distribution:

- Fleet Management
- Real-time location
- Load consolidation
- Hazmat management

Massachusetts Institute of Technology

Sectors involved:

- Transport
- Automobile industry
- Telecoms
- Banking
- Consumer electronics
- Tourism
- Mass Media
- _


ITS and the Automobile

- Traffic Information Systems
- Route Guidance and Navigation
- Location-basedServices
- Parking Information
- Safety

MIT

ITS and the Car:

Traffic Information Systems

ITS and the Car:

Traffic Information Systems

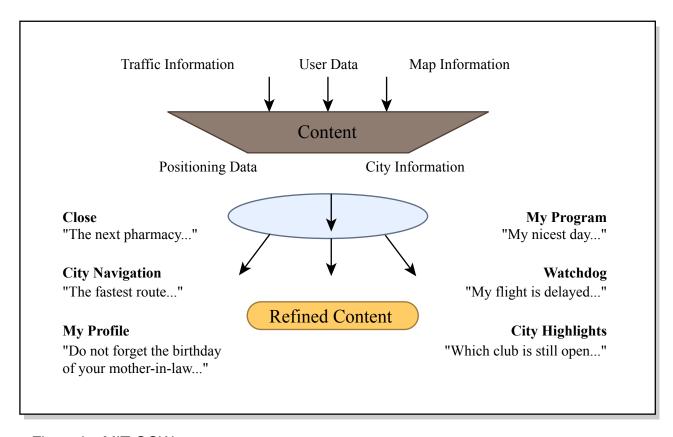


Figure by MIT OCW.

From Data to Information

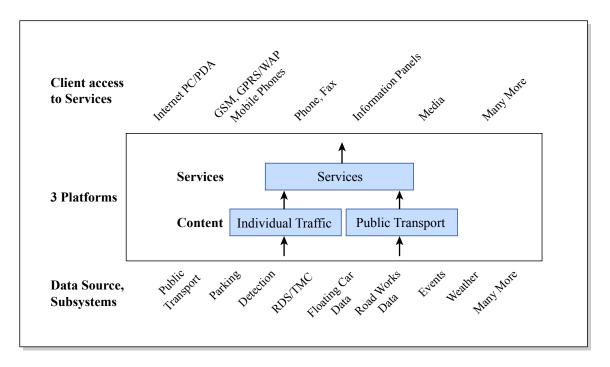


Figure by MIT OCW.

ITS and the Car:

Traffic Information Systems

- Variable MessageSigns
- SMS messages and WAP
- Digital AudioBroadcasting (DAB)
- Traffic Message Channel (TMC)

Parking Information

- Information on availability
- Reservation and ID
- Guidance to:
 - Available facility
 - Actual spot

From Traffic Control Centers (TCC) to Traffic Management Centers (TMC)

Massachusetts Institute of Technology

Just a name change?

Seattle...

- Real time information on the Web
- Updated every minute

Seattle...

Massachusetts Institute of Technology

 From color coded maps to actual photographs of the traffic stream

Seattle...

Massachusetts Institute of Technology

You can check in real time an incident

Even choosing to see upstream impact

MIT

Paris....

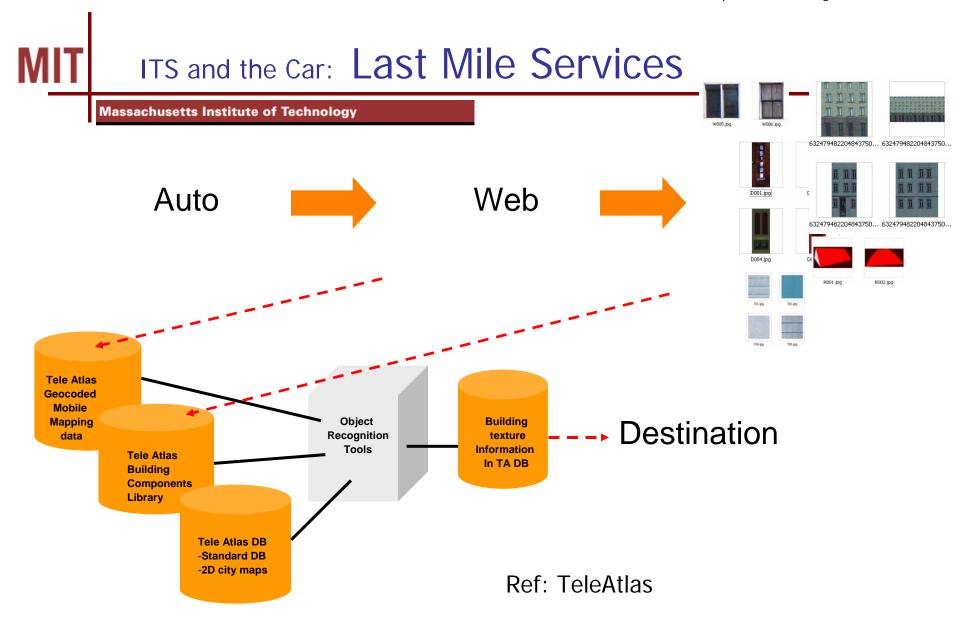
Massachusetts Institute of Technology

Color coded maps, time estimates ... and times by transit

ITS and the Car:

Route Guidance and Navigation

- Human Machine Interface (HMI)
 - Related to safety
- Speech Recognition
 - Hands free speaking and listening
- Location-Based Services
 - Accident location
 - Advanced Driver Assistance Systems (ADAS) – Collision Avoidance
 - GPS and Galileo



ITS and the Car: Last Mile Services

Massachusetts Institute of Technology

- Based on Pre-Trip download
- Route indication
- Services
 - 3D visualization of last mile
 - Remote POI selection

Ref: TeleAtlas

MIT

ITS and the Car:

Road Safety (Last but not the least...)

- Emergency Calls
- Passive (airbags) and Active (collision avoidance) Safety
- Advanced Driver Assistance Systems (ADAS):
 - Driver monitoring
 - Vision enhancement
 - Collision warning and avoidance
 - Speed alert
 - Elderly and people with disabilities

ITS and the Car:

Road Safety (Last but not the least...)

Massachusetts Institute of Technology

- Speed control in urban environments
- People driving through red lights

Speed on urban environments Drivers through red lights

ITS and Public Transport

- Real-time information for:
 - Operators:
 - Fleet management
 - Travel time reliability
 - Users:
 - Waiting anxiety
 - Real-time information anytime anywhere
 - Route Planners
 - Universal smart cards

ITS and Public Transport

Massachusetts Institute of Technology

Operations

- Automatic Vehicle Location (AVL)
- Automatic Passenger Counters (APC)
- Automatic Fare Payment (AFP)
- Bus Priority Systems
- Advanced Ticketing
- Fleet Management

ITS – The organizational constraint

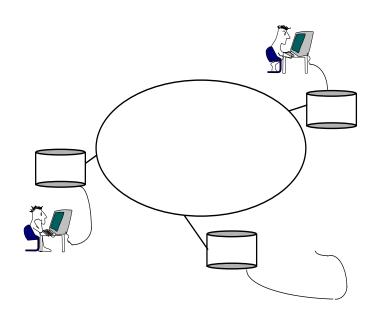
Massachusetts Institute of Technology

Easy to deploy within each turf, but hard to integrate across operators and modes

MIT

ITS Integration: A bumpy road

Massachusetts Institute of Technology


ITS:

Information +
Communication +
Integration

ITS Deployment

- ITS Deployment requires:
 - Important organizational changes
 - A new path from control to sharing information
 - A transition from hierarchical systems to networks

ITS Integration: A bumpy road

- Let's share information:
 - The public needs a single source of multimodal information
 - The operators can benefit by sharing real time info
- Let's decide with others in mind:
 - Impacts or synergies on third parties?
 - Modularity of equipment and architecture?

ITS Integration: A bumpy road

Massachusetts Institute of Technology

ITS is not a technical issue but a new frame for:

- Voluntary cooperation
- Seeing the big picture
- Bringing others into the decision process
- Adopting necessary new policies

ITS Deployment

Massachusetts Institute of Technology

In short, ITS other than short-term mitigation tools, may serve :

- ✓ To become catalysts for change
- ✓ To establish new two-way relationships
- ✓ To create new spaces for collaboration
- To provide a global vision of the transport system

... But, ITS involves a long complex and difficult path (the road less traveled)

ITS as a Tool - Main Objectives?

- To increase road capacity at low cost?
- Or, just an opportunity to promote a more efficient and diversified transport system?
- Should it be used to enhance mobility --Or to improve accessibility? Or perhaps, just to substitute some trips on certain days?

Final thought

Massachusetts Institute of Technology

- We have to:
 - master the technology
 - envisage new applications from the existing technology, and
 - retain a proper global perspective
- What do you think...
 - Is ITS good or bad?
 - What is its main contribution?
 - Is technology in general good or bad?

(See the Sept 2002 issue of the Atlantic Monthly on Home Security)