Complexity of Games & Puzzles [Demaine, Hearn & many others]

(simulation)

1 player (puzzle)

players (game) team, imperfect info

Constraint Graphs

Constraint Graphs

Constraint Logic

Rule: at least 2 units incoming at a vertex

Move: reverse an edge, preserving Rule

AND vertex

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

SPLIT vertex

OR vertex

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Sliding-Block Puzzles [Hearn & Demaine 2002]

Corollary: PSPACE-complete

Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Sliding-Block Puzzles [Hearn & Demaine 2002]

Corollary: PSPACE-complete

Wiring Vertices Together

Red-Blue Conversion

assume an even number of conversions

Red-Blue Conversion

assume an even number of conversions

Quantified Boolean Formulas (QBF)

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Existential Quantifier

Universal Quantifier

Latch

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Universal Quantifier

Crossover Gadget

Rush Hour [Hearn & Demaine 2002]

(b) AND

(c) Protected OR

PSPACE-completeness known [Flake & Baum 2002]

Triangular Rush Hour

Open: 1×1 Rush Hour [Tromp & Cilibrasi 2008]

• P or PSPACE-complete or ...?

Image courtesy of John Tromp. Used with permission.

Plank Puzzles [Hearn 2004]

Sokoban [Hearn & Demaine 2002]

PSPACE-completeness known [Culberson 1998]

Copyright (2009) From Games, Puzzles, and Computation by Robert A. Hearn and Erik D. Demaine. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

SP.268 / ESG.SP268 The Mathematics in Toys and Games Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.