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Introduction 

Almost everyone has tried to solve a Rubik’s cube. The first attempt often 
ends in vain with only a jumbled mess of colored cubies (as I will call one 
small cube in the bigger Rubik’s cube) in no coherent order. Solving the cube 
becomes almost trivial once a certain core set of algorithms, called macros, 
are learned. Using basic group theory, the reason these solutions are not 
incredibly difficult to find will become clear. 

Notation 

Throughout this discussion, we will use the following notation to refer to the 
sides of the cube: 

Front F Right R 

Down D Up U 

Left L Back B 
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The same notation will be used to refer to face rotations. For example, F 
means to rotate the front face 90 degrees clockwise. A counterclockwise ro
tation is denoted by lowercase letters (f) or by adding a ’ (F’). A 180 degree 
turn is denoted by adding a superscript 2 (F2), or just the move followed by 
a 2 (F2). 

To refer to an individual cubie or a face of a cubie, we use one letter for 
the center cubies, two letters for the edge cubies, and three letters for the 
corner cubies, which give the faces of the cube that the cubie is part of. The 
first of the three letters gives the side of the cubie we are referring to. For 
example, in the picture below, the red square is at FUR, yellow at RUF, blue 
at URF, and green at ULB: 

Bounds on Solving a Rubik’s Cube 

The number of possible permutations of the squares on a Rubik’s cube seems 
daunting. There are 8 corner pieces that can be arranged in 8! ways, each 
of which can be arranged in 3 orientations, giving 38 possibilities for each 
permutation of the corner pieces. There are 12 edge pieces which can be 
arranged in 12! ways. Each edge piece has 2 possible orientations, so each 
permutation of edge pieces has 212 arrangements. But in the Rubik’s cube, 
only 1

3 of the permutations have the rotations of the corner cubies correct. 
Only 1

2 of the permutations have the same edge-flipping orientation as the 
original cube, and only 1

2 of these have the correct cubie-rearrangement par
ity, which will be discussed later. This gives: 

(8! · 38 · 12! · 212) 
= 4.3252 · 1019 

(3 · 2 · 2) 
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possible arrangements of the Rubik’s cube. 

It is not completely known how to find the minimum distance between two 
arrangements of the cube. Of particular interest is the minimum number of 
moves from any permutation of the cube’s cubies back to the initial solved 
state. 

Another important question is the worst possible jumbling of the cube, that 
is, the arrangement requiring the maximum number of minimum steps back 
to the solved state. This number is referred to as “God’s number,” and has 
been shown (only as recently as August 12 this year) to be as low as 22.1 

The lower bound on God’s number is known. Since the first twist of a face 
can happen 12 ways (there are 6 faces, each of which can be rotated in 2 
possible directions), and the move after that can twist another face in 11 
ways (since one of the 12 undoes the first move), we can find bounds on the 
worst possible number of moves away from the start state with the following 
“pidgeonhole” inequality (number of possible outcomes of rearranging must 
be greater than or equal to the number of permutations of the cube): 

12 · 11n−1 ≥ 4.3252 · 1019 

which is solved by n ≥ 19. 

The solution mathod we will use in class won’t ever go over 100 moves or so, 
but the fastest “speedcubers” use about 60. 

Groups 

Definition 

By definition, a group G consists of a set of objects and a binary operator, 
*, on those objects satisfying the following four conditions: 

•	 The operation * is closed, so for any group elements h and g in G, h∗ g

is also in G.


1Rokicki, Tom. “Twenty-Two Moves Suffice”. http://cubezzz.homelinux.org/drupal/?q=node/view/121. 
August 12, 2008. 
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•	 The operation * is associative, so for any elements f, g, and h, (f ∗ g) ∗ 
h = f ∗ (g ∗ h). 

•	 There is an identity element e ∈ G such that e ∗ g = g ∗ e = g. 

•	 Every element in G has an inverse g−1 relative to the operation * such 
that g ∗ g−1 = g−1 ∗ g = e. 

Note that one of the requirements is not commutativity, and it will soon 
become clear why this is not included. 

Theorems About Groups 

Keep in mind the following basic theorems about groups: 

•	 The identity element, e, is unique. 

•	 If a ∗ b = e, then a = b−1 

•	 If a ∗ x = b ∗ x, then a = b 

•	 The inverse of (ab) is b−1a−1 

•	 (a −1)−1 = e 

Examples of Groups 

The following are some of the many examples of groups you probably use 
everyday: 

•	 The integers form a group under addition. The identity lement is 0, 
and the inverse of any integer a is its negative, −a. 

•	 The nonzero rational numbers form a group under multiplication. The 
identity element is 1, and the inverse of any x is 

x 
1 . 

•	 The set of n × n non-singular matrices form a group under multiplica
tion. This is an example of a non-commutative group, or non-abelian 
group, as will be the Rubik group. 
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Cube Moves as Group Elements 

We can conveniently represent cube permutations as group elements. We 
will call the group of permutations R, for Rubik (not to be confused with 
the symbol for real numbers). 

The Binary Operator for the Rubik Group 

Our binary operator, *, will be a concatenation of sequences of cube moves, or 
rotations of a face of the cube. We will almost always omit the * symbol, and 
interpret fg as f ∗ g. This operation is clearly closed, since any face rotation 
still leaves us with a permutation of the cube, which is in R. Rotations 
are also associative: it does not matter how we group them, as long as the 
order in which operations are performed is conserved. The identity element 
e corresponds to not changing the cube at all. 

Inverses 

The inverse of a group element g is usually written as g −1 . We saw above 
that if g and h are two elements of a group, then (hg)−1 = g−1h−1 . If we 
think of multiplying something by a group element as an operation on that 
thing, then the reversed order of the elements in the inverse should make 
sense. Think of putting on your shoes and socks: to put them on, you put 
on your socks first, then your shoes. But to take them off you must reverse 
the process. 

Let F be the cube move that rotates the front face clockwise. Then f , 
the inverse of F , moves the front face counterclockwise. Suppose there is 
a sequence of moves, say FR, then the inverse of FR is rf : to invert the 
operations they must be done in reverse order. So the inverse of an element 
essentially “undoes” it. 

Permutations 

The different move sequences of cube elements can be viewed as permuta
tions, or rearrangements, of the cubies. Note move sequences that return 
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the same cube configuration are seen to be the same element of the group of 
permutations. So every move can be written as a permutation. For example, 
the move FFRR is the same as the permutation (DF UF)(DR UR)(BR FR 
FL)(DBR UFR DFL)(ULF URB DRF). 

It is easier to discuss these permutations first using numbers. An example of 
a permutation written in canonical cycle notation is: 

(1)(234) 

This means that 1 stays in place, and elements 2, 3, and 4 are cycled. For

example, 2 goes to 3, 3 goes to 4, and 4 goes to 2. (234) → (423).

The steps in writing down combinations of permutations in canonical cycle

notation are as follows:


1. Find the smallest item in the list, and begin a cycle with it. In this 
example, we start with 1. 

2. Complete the first cycle by following the movements of the objects 
through the permutation. Do this until you close the cycle. For in
stance, in (1 2 4)(3 5) * (6 1 2)(3 4), we start with 1. 1 moves to 2 in 
the first permutation, and 2 moves to 6 in the second, so 1 moves to 6. 
Following 6 shows that it moves back to 1, so 6 and 1 form one 2-cycle. 

3. If you have used up all the numbers, you are done. If not, return to step 
1 to start a new cycle with the smallest unused element. Continuing in 
this manner gives (1 6)(2 3 5 4). 

If P consists of multiple cycles of varying length, then the order of that 
permutation is n, since applying P n times returns the beginning state. If P 

consists of multiple cycles of varying length, then the order is the least com
mon multiple of the lengths of the cycles, since that number of cycle steps 
will return both chains to their starting states. Below are several examples: 

(1 2 3)(2 3 1) = (1 3 2) order 3 
(2 3)(4 5 6)(3 4 5) = (2 4 3)(5 6) order 6 

(1 2) order 2 
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Parity 

Permutations can also be described in terms of their parity. Any length n 

cycle of a permutation can be expressed as the product of 2-cycles.2 To 
convince yourself that this is true, look at the following examples: 

(1 2) = (1 2) 
(1 2 3) = (1 2)(1 3) 

(1 2 3 4) = (1 2)(1 3)(1 4) 
(1 2 3 4 5) = (1 2)(1 3)(1 4)(1 5) 

The pattern continues for any length cycle. 

The the parity of a length n cycle is given by the number 2 cycles it is 
composed of. If n is even, an odd number of 2-cycles is required, and the 
permutation is odd, and vise versa. So odd permutations end up exchanging 
an odd number of cubies, and even ones an even number. 

Now we will prove an important fact about cube parity that will help us 
solve the cube later: 

Theorem: The cube always has even parity, or an even number of cubies 
exchanged from the starting position. 

Proof (by induction on the number of face rotations, n): 

Base Case: After n = 0 moves on an unsolved cube, there are no cubies 
exchanged, and 0 is even. 

Let P (n) : after n rotations, there are an even number of cubies exchanged. 
We assume P (n) to show P (n) → P (n + 1). Any sequence of moves is com
posed of single face turns. As an example of the permutation created by a 
face turn, look at the move F = (FL FU FR FD)(FUL FUR FDR FDL) 
= (FL FU)(FL FR)(FL FD)(FUL FUR)(FUL FDR)(FUL FDL). Since each 
of the length 4 chains in this permutation can be written as 3 2-cycles for a 
total of 6 2-cycles, the parity of the face turn is even. This fact applies to any 
face turn, since all face turns, no matter which face they are applied to, are 

2for proof see Davis, Tom. Permutation Groups and Rubiks Cube. May 6, 2000. 
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essentially equivalent. After n moves the cube has an even number of cubies 
exchanged. Since the n + 1 move will be a face turn, there will be an even 
number of cubies flipped. There was already an even number exchanged, and 
so an even parity of cubie exchanges is preserved overall�. 

Since any permutation of the Rubik’s cube has even parity, there is no move 
that will exchange a single pair of cubies. This means that when two cubies 
are exchanged, we know there must be other cubies exchanged as well. We 
will get around this problem by using 3-cycles that will cycle 3 cubies, in
cluding the two that we want to exchange. 

When talking about the cycle structure of cube moves, the following no
tation will be helpful: 

• φcorner describes the cycle structure of the corner cubies 

• φedge describes the cycle structure of the edge cubies 

There might come a time when we want to focus first on orienting all the 
edge pieces correctly, and don’t care about the corners. In this case, we can 
deal only with φcorner and ignore whatever happens to the edge pieces. It is 
helpful to separate the two. Also note that any cycles in φcorner can never 
contain any cubies that are also involved in φedge since an cubie cannot be 
both an edge and a corner. We never talk about φcenter since the center of 
the cube is fixed. 

Subgroups 

Given a group R, if S ⊆ R is any subset of the group, then the subroup H 

generated by S is the smallest subroup of R that contains all the elements 
of S. For instance, {F} generates a group that is a subgroup of R consisting 
of all possible different cube permutations you can get to by rotating the 
front face, {F, F 2, F 3 F 4}. The group generated by {F, B, U, L, R, D} is the 
whole group R. Below are some examples of some generators of subroups of 
R: 

• Any single face rotation, e.g., {F} 

• Any two opposite face rotations, e.g., {LR} 
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• The two moves {RF}. 

We define the order of an element g as the number m, such that gm = e, the 
identity. The order of an element is also the size of the subgroup it generates. 
So we can use the notion of order to describe cube move sequences in terms 
of how many times you have to repeat a particular move before returning to 
the identity. For example, the move F generates a subgroup of order 4, since 
rotating a face 4 times returns to the original state. The move FF generates 
a subroup of order 2, since repeating this move twice returns to the original 
state. Similarly, any sequence of moves forms a generator of a subgroup that 
has a certain finite order. 

Since the cube can only achieve a finite number of arragnements, and each 
move jumbles the facelets, eventually at least some arrangements will start 
repeating. Thus we can prove that if the cube starts at the solved state, then 
applying one move over and over again will eventually recyle to the solved 
state again after a certain number of moves. 

Theorem: If the cube starts at the solved state, and one move sequence P 

is performed successively, then eventually the cube will return to its solved 
state. 

Proof: Let P be any cube move sequence. Then at some number of times m 

that P is applied, it recycles to the same arrangement k, where k < m and 
m m is the soonest an arrangement appears for the second time. So P k = P . 

Thus if we show that k must be 0, we have proved that the cube cycles back 
to P 0, the solved state. 

mIf k = 0, then we are done, since P 0 = 1 = P . Now we prove by con
tradiction that k must be 0. If k > 0: if we apply P−1 to both P k and P m 

mwe get the same thing, since both arrangements P k and P are the same. 
Then P kP−1 = P mP m−1 → P k−1 = P m−1 . But this is contradictory, since 
we said that m is the first time that arrangements repeat, so therefore k must 
equal 0 and every move sequence eventually cycles through the initial state 
again first before repeating other arrangements. 
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Lagrange’s Theorem 

Try repeating the move FFRR on a solved cube until you get back to the 
starting position. How many times did you repeat it?(hopefully 6) No matter 
what, that number, the size of the subgroup generated by FFRR, must be a 

divisor of (8!·38 
·12!·212) . Lagrange’s Theorem tells us why. 

(3·2·2) 

Before we prove Lagrange’s Theorem, we define a coset and note some 
properties of cosets. If G is a group and H is a subgroup of G, then for 
an element g of G: 

• gH = {gh : h ∈ H} is a left coset of H in G. 

• Hg = {gh : h ∈ H} is a right coset of H in G. 

So for instance if H is the subgroup of R generated by F, then one right 
coset is shown below: 

Lemma: If H is a finite subgroup of a group G and H contains n elements 
then any right coset of H contains n elements. 

Proof: For any element g of G, Hg = {hg|h ∈ H} defines the right coset. 
There is one element in the coset for every h in H , so the coset has n elements. 

Lemma: Two right cosets of a subgoup H in a group G are either iden
tical or disjoint. 

Proof: Suppose Hx and Hy have an element in common. Then for some 
h1 and h2: 

h1x = h2y 

h−1 h−1Then x = 1 h2y, and some h3 = 1 h2 gives x = h3y. So every element of 
Hx can be written as an element of Hy: 

hx = hh3y 
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for every h in H . So if Hx and Hy have any element in common, then every 
element of Hx is in Hy, and a similar argument shows the opposite. There
fore, if they have any one element in common, they have every element in 
common and are identical �. 

We now can say that the right cosets of a group partition the group, or 
divide it into disjoint sets, and that each of these partitions contains the 
same number of elements. 

Lagrange’s Theorem: the size of any group H ⊆ G must be a divisor of 
the size of G. So m|H| = |G| for some m ≥ 1 ∈ N+ . 

Proof: The right cosets of H in G partition G. Suppose there are m cosets 
of H in G. Each one is the size of the number of elements in H , or |H|. G is 
just the sum of all the cosets: G = h1G + h2G + . . . + hnG, so its size is the 
sum of the sizes of all the cosets. So we can write |G| = m|H| �. 

Below is a list3 of some group generators and their sizes, all factors of the 
size of R: 

Generators 
U 
U, RR 
U, R 
RRLL, UUDD, FFBB 
Rl, Ud, Fb 
RL, UD, FB 
FF, RR 
FF, RR, LL 
FF, BB, RR, LL, UU 
LLUU 
LLUU, RRUU 
LLUU, FFUU, RRUU 
LLUU, FFUU, RRUU, BBUU 
LUlu, RUru 

Size 
4 
14400 
73483200 
8 
768 
6144 
12 
96 
663552 
6 
48 
82944 
331776 
486 

Factorization 
22 

26 · 32 · 52 

26 · 38 · 52 

23 

28 · 3 
211 · 3 
2 · 32 

25 · 3 
213 · 34 

2 · 3 
24 · 3 
210 · 34 

212 34· 
2 · 35 

Most of the moves we use will generate relatively small subgroups. Play 
around with some of the smaller size subgroups above and watch the cube 

3Davis, Tom Group Theory via Rubik’s Cube 
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cycle back to its original configuration. 

Cayley Graphs 

A useful way to gain insight into the structure of groups and subgroups is 
the Cayley graph . The following properties describe a Cayley graph of a 
group G: 

•	 Each g ∈ G is a vertex. 

•	 Each group generator s ∈ S is assigned a color cs. 

•	 For any g ∈ G, s ∈ S, the elements corresponding to g and gs are joined 
by a directed edge of color cs. 

Drawing the Cayley graph for R would be ridiculous. If would have 43 tril
lion vertices! Instead, we’ll look at some Cayley graphs of small subgroups 
of R. 

The following is the Cayley graph for the subgroup generated by F : 

The moves φ = FF and ρ = RR generate the following graph (note that 
φ2 = ρ2 = 1): 

12 
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What happens when we try to draw the graph for U? Or RRBB? They 
will have the same Cayley graphs as those shown above, respectively. If two 
groups have the same Cayley graph, they have essentially the same structure, 
and are called isomorphic. Two isomorphic groups will have the same 
order and same effect on the cube. For instance, performing FFRR has the 
same effect as rotating the cube so that the L face is now in front and then 
performing RRBB. 

Macros 

We first define some properties of cube group elements, and then use these 
properties and what we learned above to develop some macros or combina
tions of cube moves that will help us accomplish specific cubie rearrangements 
that will enable us to solve the cube. 

Commutator 

The move sequence operations on a Rubik’s cube are pretty obviously not 
commutative. For example, rotate the front face (F ), then rotate the right 
face (R) to make a move FR. This is clearly not the same as rotating the 
right face followed by the front face, or RF . One useful tool to describe 
the relative commutativity of a sequence of operations is the commutator , 
PMP−1M−1, denoted [P.M ], where P and M are two cube moves. If P and 
M are commutative, then their commutator is the identity, since the terms 
can be rearranged so that P cancels P−1 and same with M . 

Let the support of an operator be all the cubies changed by it. Then two op
erations are commutative if either they are the same operation or if supp(P) 
∩ supp(M) = ∅, that is, if each move affects completely different sets of cubies. 

If the commutator is not the identity, then we can measure the “relative 
commutativity” by the number of cubies changed by applying the commuta
tor. Looking at the intersection of the supports of the two operations gives 
insight into this measure. Useful pairs of moves have only a small number of 
cubies changed in common, and you will see macros involving commutators 
come up again and again. 
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A useful theorem about commutators that we will not prove but will make 
use of is the following: 

If supp(g)∩supp(h) consists of a single cubie, then [g, h] is a 3-cycle. 

Below are some usefull building blocks for commutators that can be used 
to build macros: 

•	 FUDLLUUDDRU flips exactly one edge cubie on the top face 

•	 rDRFDf twists one cubie on a face 

•	 FF swaps a par of edges in a slice 

•	 rDR cycles three corners 

Conjugation 

Let M be some macro that performs a cube operation, say a three-cycle of 
edge pieces. Then we say for some cube move P , PMP−1 is the conjuga

tion of M by P . Conjugating a group element is another very useful tool 
that will help us describe and build useful macros. 

First we will introduce a couple useful definitions: An equivalence relation 
is any relation ∼ between elements that are: 

•	 Reflexive: x ∼ x 

•	 Symmetric: If x ∼ y then y ∼ x 

•	 Transitive: If x ∼ y and y ∼ z then x ∼ z 

We will let the relation ∼ be conjugacy. So if for some g ∈ G, x ∼ y, then 
gxg−1 = y Here we prove that conjugacy is an equivalence relation: 

•	 Reflexive: gxg−1 = x if g = 1, so x ∼ x 

•	 Symmetric: If x ∼ y, then gxg−1 = y, so multiplying each side by g on 
the right and g−1 on the left gives x = g−1yg 

•	 Transitive: If x ∼ y and y ∼ z, then y = gxg−1 and z = hyh−1, so 
z = hgxg−1h−1 = (hg)x(hg)−1, so x ∼ z 
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An equivalence class c(x), x ∈ G is the set of all y ∈ G : y ∼ x. We can 
partition G into disjoint equivalence classes, or conjugacy classes . 

We will not give a formal proof here, but two permutation elements of R 
are conjugates if they have the same cycle structure. The following example 
should make this more clear. 

In solving a cube, one straightforward approach is to solve it layer by layer. 
Once you get to the third layer, some of the edge pieces might be flipped the 
wrong way, as in the following picture: 

We want to flip these pieces correctly, but leave the bottom two layers in

tact. We can use conjugation to do so. Consider the move consisting of the

commutator g = RUru. Applying g to the cube has the effect shown below:


You can see that 7 cubes are affected, 2 of which are not in the top layer, but 
are instead in the R layer. We can fix this by performing a rotation before 
we use the macro that will put top layer cubies in all the positions affected 
by the macro, so that only top layer cubies are rearranged. 

Now take the conjugate of g by F to get the move FRUruf: 
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By first performing F and then reversing this action with f after the macro is 
performed, we ensure that only the top row pieces are affected. We can use 
our permutation notation to describe what this macro does. First look at g 
before conjugation. φcorner is of the form (12)(34), since it switches the top 
back corners and the upper right corners. φedge is of the form (123), since it 
3-cycles the edge pieces FR, UR, and UB. Then for the conjugated macro, 
φcorner has the form (12)(34), since it switches two pairs of corners: the top 
front and the top back. φedge is of the form (123), since it leaves one edge 
piece in place and 3-cycles the other 3 edge pieces. So the original macro and 
its conjugate have the same cycle structures. The only difference between a 
macro and its conjugate are the actual pieces involved in the cycles. Once 
you find a sequence of moves that performs the operation you want, e.g., 
cycling 3 pieces, flipping pieces, etc., than you can apply it to the desired 
pieces by conjugating it with the appropriate cube move. 

Solving the Cube 

The Screwdriver Method 

We won’t be going over this one in class, and in fact you should never need 
it again. It involves turning one face 45 degrees, prying out the edge piece 
sticking out, and disassembling the cube using a screwdriver. Not much math 
here so we’ll move on. 

The “Bottom up” method 

This is one of the most intuitive, but probably one of the slowest, ways to 
solve the cube. It averages about 100 moves per solution. 

1st Layer 

This first layer must be done by inspection. There is usually no set algorithm 
to follow. It is helpful to focus on getting a cross first with the edge pieces 
correctly in place, and then solving the corners one by one. 
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2nd Layer 

Now rotate the bottom (solved) layer so that its edges on the other faces are 
paired with the correct center pieces. Your cube should look as follows: 

For this layer we only have to solve the four middle layer edge pieces. If an 
edge piece is in the top layer, use the following macros: 

URurFrfR


ulULfLFl 
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If an edge pieces is not in the top layer, but is not oriented correctly, use the 
following to put the piece in the top layer and then proceed as above: 

URurFrfR 

The second layer should now be solved. 

3rd Layer 

We will do this layer in 3 steps: 

1. Flip the edges to form a cross on the top: To flip a top layer edge 
correctly, use this macro: 

FRUrufU


Repeat until all the edge pieces form a cross on the top:
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2. Position the top layer edges correctly: Now position the top layer so 
that one of the edges is solved. If all the edges are solved, move on 
to the next step. If not, use the following algorithms to permute the 
edges correctly: 

RU2ruRur 

RUrURU2r 

If none of these work, apply one of them until you get to a position 
where one of these will work, then proceed. 

3. Flip the top layer corners: For each corner that does not have the 
correct color on the top layer, position it at UBR and perform RDrd 
repreatedly until it is oriented with the correct color on top. Then, 
without rotating the cube, position the next unsolved corner at UBR 
and repeat the process. The bottom two layers will appear to be a 
mess, but they will be correct once all the four corners are facing the 
correct direction. 
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4. Position the top layer corners correctly: Now the top layer should have 
all the same color faces, but the corners might not be oriented correctly. 
Position one corner correctly, and then determine whether the others 
are solved, need to be rotated clockwise, or need to rotated counter
clockwise, and then apply the following (let x = rD2R): 

xU2xuxux 

xUxUxU2x 

You should end with a solved cube! 

Other Methods 

The above solution is by no means the only one. Some oter popular methods 
include: 

•	 CFOP: Cross, First two layers, Orient last layer, Permute last layer. 
Invented in the 1980s by Jessica Fridrich. 

•	 Petrus Method: solve a 2 by 2 by 2 block first, expand this to 2 by 2 
by 3, fix the improperly oriented edges on the outside layer, and then 
solve the rest. 
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