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Introduction 

Kinds of Games We’ll Discuss 

Much of the game theory we will talk about will be on combinatorial 
games which have the following properties: 

•	 There are two players. 

•	 There is a finite set of positions available in the game (only on rare 
occasions will we mention games with infinite sets of positions). 

•	 Rules specify which game positions each player can move to. 

•	 Players alternate moving. 

•	 The game ends when a player can’t make a move. 

•	 The game eventually ends (it’s not infinite). 

Today we’ll mostly talk about impartial games . In this type of game, the 
set of allowable moves depends only on the position of the game and not on 
which of the two players is moving. For example, Nim, sprouts, and green 
hackenbush are impartial, while games like GO and chess are not (they are 
called partisan). 
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The Game of Nim 

We first look at the simple game of Nim, which led to some of the biggest 
advances in the field of combinatorial game theory. There are many versions 
of this game, but we will look at one of the most common. 

How To Play 

There are three piles, or nim-heaps, of stones. Players 1 and 2 alternate 
taking off any number of stones from a pile until there are no stones left. 
There are two possible versions of this game and two corresponding winning 
strategies that we will see. Note that these definitions extend beyond the 
game of Nim and can be used to talk about impartial games in general. 

•	 Normal Play The player to take the last stone (or in general to make 
the last move in a game) wins. This is called normal play since most 
impartial games are played this way, although Nim usually is not. 

•	 Misere Play The player that is forced to take the last stone loses. 

An example normal play game is shown below: 

Sizes of heaps Moves 
A B C 

3 4 5 I take 2 from A 
1 4 5 You take 3 from C 
1 4 2 I take 1 from B 
1 3 2 You take 1 from B 
1 2 2 I take entire A heap leaving two 2’s. 
0 2 2 You take 1 from B 
0 1 2 I take 1 from C leaving two 1’s. 
0 1 1 You take 1 from B 
0 0 1 I take entire C heap and win. 

What is your winning strategy? Luckily, we can find one. Nim has been 
solved (we use the term solved loosely here, but there are several categories 
of “solutions” to games) for all starting positions and for any number of 
heaps. 
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First we’ll look at different types of game positions, then we’ll do some work 
with “nimbers” (yes, that really is a word) and then apply them to finding 
a solution to Nim. 

Types of impartial game positions 

•	 A game is in a P-position if it secures a win for the Previous player 
(the one who just moved). 

•	 A game is in a N-position if it secures a win for the Next player. 

So in normal play Nim with three heaps, (0,0,1) is an N-position and (1,1,0) 
is a P-position. We call the position from which no possible moves are left a 
terminal position. 

To find whether a Nim position is N or P, we work backwards from the 
end of the game to the beginning in a process called backwards induction 
: 

1.	 Label every terminal position as P. 

2.	 Label every position that can reach a P position as N. 

3.	 For positions that only move to N positions, label P. 

4. At this point either all positions are labeled or return to step 2 and 
repeat the process until all positions are labeled. 

For misere play, just invert step 1: every terminal position is N. 

Applying these rules to Nim, we first set the only terminal position (in other 
games there could be many) 0,0,0, to P. It is obvious that any position (0,0,n) 
is an N position, since the next player can just take the last heap in one turn. 

Practice With N and P positions 

Consider the subtraction game in which you start with a pile of chips and 
players alternate taking away any number si from the set S = {1, 3, 4} of 
chips from the heap. The player to take the last chip loses. 
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---------

We can see that 1, 3 and 4 must be N-positions, since the next player can 
just take all of the chips. 0 must be a P-position of course, since the player 
that moved to 0 wins. 2 must be a P position since the only legal move is to 
an N-position. Then 5 and 6 must be N since they can be moved to 2. If we 
continue analyzing the game in this manner we get the following sequence of 
N and P positions: 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
pos P N P N N N N P N P N N N N P 

This period sequence of Ns and Ps (PNPNNNN) continues forever. In fact, 
almost all subtraction games have such periodic sequences of N and P values. 

Nimber Arithmetic 

The key operation in the solution to Nim is binary addition without carrying. 
To add two numbers in this manner, first write out their binary expansions, 
and then take the exclusive or (XOR) of the two numbers bit by bit. The 
following is an example: 

3 011 
+5 100 

7 111 

In the XOR operation, 1+1= 0 = 0+0, 1+0=1=1+0. Another way to look 
at it is that if you are adding an odd number of ones the answer is 1, an even 
number of ones gives 0. We will write this kind of addition of two numbers 
x and y as x ⊕ y. 

Below is an addition table for nimbers: 
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The Solution 

Now comes the big moment... the solution! Notice that if we take the sum 
of all the nim-heaps, at the end the nimsum of all the heaps is equal to 0 
(since adding 0 together any number of times gives 0). But there are other 
times that the nim-sum can be 0. Note that any x ⊕x = 0, since any number 
XORed with itself is 0. We will now prove the following theorem about Nim: 

Theorem The winning strategy in normal play Nim is to finish every move 
with a Nim-sum of 0. 

To prove this we will use the following two lemmas: 

Lemma 1 If the Nim-sum is 0 after a player’s turn, then the next move 
must change it. 

To prove this, let the number of stones in the heaps be x1, x2, . . . xn, and 
s be the nim-sum, s = x1 ⊕x2 ⊕x3 ⊕ . . . ⊕xn. Let t be the sum of the heaps 
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yi after the move, t = y1 ⊕ y2 ⊕ y3 ⊕ . . . ⊕ yn. Then if s = 0, the next move 
causes some xk � yk and the rest of the xi = yi for i = k, since only one pile 
of stones is changed. Then: 

t = 0 ⊕ t 
= s ⊕ s ⊕ t 
= s ⊕ (x1 ⊕ x2 ⊕ . . . ⊕ xn) ⊕ (y1 ⊕ y2 ⊕ . . . ⊕ yn) 
= s ⊕ (x1 ⊕ y1) ⊕ (x2 ⊕ y2) ⊕ . . . ⊕ (xk ⊕ yk) 
= s ⊕ xk ⊕ yk 

If s is 0, then t must be nonzero, since xk ⊕ yk will never be 0. Therefore, if 
you make the nim-sum 0 on your turn, your opponent must make it nonzero. 
Think of the games as being balanced when the nim-sum is 0. From a bal
anced position it is only possible to unbalance it by moving it, but from an 
unbalanced position it is possible to move to either another unbalanced po
sition or a balanced one. We prove this below: 

Lemma 2 It is always possible to make the nim-sum 0 on your turn if 
it wasn’t already 0 at the beginning of your turn. 

Let d be the position of the most significant bit in s (defined above). Now 
choose a heap xk such that it’s most significant bit is also in position d (one 
must always exist, the most significant bit of s must come from the most 
significant bit of any of the nim heaps). Now choose to make the new value 
of the heap yk = s ⊕ xk by removing xk − yk stones from the heap. Now the 
new nim-sum is: 

t = s ⊕ xk ⊕ yk(from above) 
= s ⊕ xk ⊕ xk ⊕ s 
= s ⊕ s ⊕ xk ⊕ xk 

= 0 

Proof Now we prove the original theorem. If you start off by making 
your first move so that the Nim-sum is 0, then on each turn your opponent 
will disturb the sum, and you will in turn set it back to 0. By lemma 1, 
the opponent has no choice but to disturb the sum, and by lemma 2 you 
can always set it back to 0. Eventually on your turn there will be no stones 
left with a nim-sum of 0, meaning that you are the winner! Of course, if 
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the nim-sum starts off at 0 and you go first, then you must hope for your 
opponent to make a mistake, since he will have the winning strategy. 

There is only a slight modification of this strategy for misere play. Fol
low the same strategy as above until there are only heaps of size 1 left. In 
normal play the strategy would be to leave an even number of heaps of size 
1, but in misere play just be sure to leave an odd number of heaps of size 1 
so that your opponent is stuck with the very last one. 

From our analysis above, we can see that any nim position in which the 
nim-sum of the heaps is 0 is a P-position, else the position is an N position. 

Practical Strategy 

Here are a couple things to keep in mind while playing: 

•	 Whenever possible, reduce the heaps to two non-zero heaps containing 
the same number of coins each. This obviously has a nim-sum of 0. 
Now just mimic your opponent’s move each time on the opposite heap 
to keep the two heaps equal until you are able to take the final coin. 

•	 Since doing binary addition is kind of hard to do in your head for large 
numbers, a more feasible strategy is often needed. An easy way to 
think about making the nim-sum 0 is to always leave even subpiles 
of the powers of 2, starting with the largest power possible, where a 
subpile is a pile group of coins within a nim-heap. So for example, leave 
an even number of subpiles of 2, 4, 8, 16, etc. Any time there are an 
even number of piles of each power of 2, the nim-sum must be 0. 

Poker Nim 

This game is played the same as regular Nim, but a player can now have the 
option on his turn of either adding more chips to a heap or subtracting chips 
from a heap. We call the heaps in such a game bogus nim heaps . What is 
the winning strategy in this game? 

A closer look reveals that this is just the same game as regular Nim. Any 
time a player adds chips to a pile, the next player can exactly reverse the 
move and return the game to its original position. In this way, adding chips 
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is a reversible move. So just play regular Nim, but any time your opponent 
adds chips, just remove the same amount on your turn. 

Try Northcott’s Game below: 

A position in Northcotts game is a checkerboard with one black and one white 
checker on each row. “White” moves the white checkers and “Black” moves 
the black checkers. A checker may move any number of squares along its row, 
but may not jump over or onto the other checker. Players move alternately 
and the last to move wins. 

Note that this game is neither impartial nor must it end in finite time, but 
knowin the strategy for Nim will allow you to win the game. Try the game 
before looking at the solution at the end of these notes. 

Below we’ll show that any impartial game is the same as a bogus Nim heap. 

Sprague-Grundy Theorem 

Now we’ll use Nim to help us derive the fundamental theorem of impartial 
games. 
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From Games to Graphs 

To further analyze impartial games we will put the games on a graph as 
follows: 

A game consists of a graph G = (X, F ) where 

•	 X is the set of all possible game positions 

•	 F is a function that gives for each x ∈ X a subset of possible x’s to 
move to, called followers. If F (x) is empty, the position x is terminal. 

•	 The start position is x0 ∈ X. So player 1 moves first from x0. 

•	 Players alternate moves. At position x, the player chooses from y ∈ 
F (x). 

•	 The player confronted with the empty set F (x) loses. 

We will only look at graphs that are progressively bounded , meaning that 
from every start position x0, every path has finite length. In other words, 
the graph is finite and has no cycles. 

The following is an example of the game graph for the “Subtraction Game.” 
In this game you start with a set number (in this example, 10) and take away 
any number of coins up to k (in this example, 3). The person that makes 
the total number of coins 0 on their turn wins. 

The Sprague-Grundy Function 

The Sprague-Grundy function of a graph G = (X, F ) is a function g 
defined on X that takes only non-negative integer values and is computed as 
follows: 

g(x) = min{n ≥ 0 : n 

�

g(y) for y ∈ F (x)}= 

Uh... English please? In words, the Sprague-Grundy (which from now on I’ll 
abbreviate as SG) is the smallest non-negative value not found among the 
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SG values of the followers of x. This is known formally as the mex function, 
meaning Minimum Excluded Value. Below are some practice examples: 

mex({2,4,5,6}) = 0 
mex({0,1,2,6}) = 3 

So the SG function can be rewritten as follows: 

g(x) = mex{g(y) : y ∈ F (x)} 

Notice this function is defined recursively. That is, the definition of g(x) uses 
g itself. So we’ll need some base cases. Set all terminal nodes x to have 
g(x) = 0. Then any nodes that have only terminal nodes as followers have 
g(x) = 1. In this way we can work our way through the graph until all nodes 
are assigned an SG value. Try it on the graph below: 

We’ll first start by letter each position as being either “N” or “P”. Label 
every node with no outgoing edges as P, since it is an endgame and by defi
nition a P position. Every node pointing to a P node must be N, so go ahead 
and label those too. Now label all the positions that only go to N positions 
as P. You should end up with the following labels: 
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Now we can label the Sprague-Grundy values of each node. First wet all the 
terminal positions (all of which should have P’s right now) to 0 as the base 
cases. Since the SG value of nodes is just the mex function defined above, 
any node pointing only to terminal nodes must be 1. So label the one node 
pointing to the two terminal positions as 1. The node pointing only to 0 
and 1 valued nodes can be labeled with a 2, since it is the minimum integer 
not in the set {0, 1}. But the node pointing to 2 and 1 can be labeled 0 
since 0 is the smallest integer not in the set of its followers, 2 and 1. Finish 
off the numbering by labeling the top node with 3 to obtain the following 
numbering: 

Notice that all vertices that have an SG value of 0 are P positions! All others

are N. Sound familiar? So it looks like a good strategy on a game that can

be represented in such a graph would be to move to a vertex with g(x) = 0.
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Let’s look at another example game, called the 21 subtraction game. You 
and a friend start with 21 coins. You take turns taking up to 3 coins away 
at a time. The person to take the last coin wins. 

We can see that the position with 4 coins left is a P position. The next 
player must reduce to the pile to some numer within the range 1-3, and so 
when the player after him moves he can take all the coins. Below are the SG 
numbers for each position: 

x 0 1 2 3 4 5 6 ... 
g(x) 0 1 2 3 0 1 2 ... 

In other words, the SG function of this game is g(x) = x mod 4. 

For the game of Nim with one heap, the function is just g(x) = x. 

Adding Games (Graphs) 

One advantage of using the SG function is that we can break up games into 
smaller parts and then add their graphs together to make one big game. We 
call this addition the disjunctive sum of two games. So to take the dis
junctive sum of games G and H , players can move on their turn in either the 
game G or the game H , and the entire game is over when both G and H are 
at terminal positions. We can add any n games Gi together as follows: 

To sum the games G1 = (X1, F1), G2 = (X2, F2), . . . Gn = (Xn, FN ), 
G(X, F ) = G1 + G2 + . . . + Gn where: 

•	 X = X1 ×X2 ×X3 . . .×Xn, or the set of all n-tuples such that xi ∈ Xi∀i 

•	 The maximum number of moves is the sum of the maximum number 
of moves of each component game 

For example, 3 pile Nim is just the sum of 3 games of 1 pile Nim. 

Sprague-Grundy Theorem 

Now we are actually ready to state the theorem, which says that the SG 
function for a sum of games on a graph is just the Nim sum of the SG func
tions of its components. 
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If gi is the Sprague-Grundy function of Gi , i = 1 . . . n, then G = G1 +. . .+Gn 

has Sprague-Grundy function g(x1 . . . xn) = g1(x1) ⊕ gn(xn). 

Proof: (replicated from the reading) Let x = (x1 . . . xn) be an arbitrary 
point of X. Let b = g1(x1)⊕ . . . ⊕ gn(xn). We are to show two things for the 
function g(x1 . . . xn): 

1. For every non-negative integer a < b, there is a follower of (x1 . . . xn) 
that has g-value a. 

2. No follower of (x1 . . . xn) has g-value b. 

Then the SG-value of x, being the smallest SG-value not assumed by one of 
its followers, must be b. 

To show (1), let d = a ⊕ b, and k be the number of digits in the binary 
expansion of d, so that 2k−1 ≤ d < 2k and d has a 1 in the kth posi
tion (from the right). Since a < b, b has a 1 in the kth position and a 
has a 0 there. Since b = g1(x1) ⊕ . . . ⊕ gn(xn), there is at least one xi 

such that the binary expansion of gi(xi) has a 1 in the kth position. Sup
pose for simplicity that i = 1. Then d ⊕ g1(x1) < g1(x1) so that there 
is a move from x1 to Some x ′ 

1 with g1(x ′ 
1
) = d ⊕ g1(x1). Then the move 

from (x1, x2 . . . xn) to (x ′ 
1
, x2 . . . xn) is a legal move in the sum, G, and 

g1(x1

′ )⊕g2(x2)⊕ . . . ⊕gn(xn) = d ⊕g1(x1)⊕g2(x2)⊕ . . . ⊕gn(xn) = d ⊕ b = a. 

Finally, to show (2), suppose to the contrary that (x1 . . . xn) has a follower 
with the same g-value, and suppose without loss of generality that this in
volves a move in the first game. That is, we suppose that (x ′ 

1
, x2 . . . xn) 

is a follower of (x1, x2 . . . xn) and that g1(x ′ 
1
) ⊕ g2(x2) ⊕ . . . ⊕ gn(xn) = 

g1(x1) ⊕ g2(x2) ⊕ . . . ⊕ gn(xn). By the cancellation law, g1(x ′ 
1
) = g1(x1). 

But this is a contradiction since no position can have a follower of the same 
SG-value. 

So if we think of the game of 3-heap nim as a sum of 3 individual games, 
where the SG value of a game of nim is just the size of the heap, then the 
SG value of the game is indeed the nim-sum of the individual heap-sizes, or 
SG-values, as we discovered in our strategy for playing Nim. 
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Example problems: see 4.3, 4.4 in the week’s readings. We will discuss 
several of these examples in class. 

More Impartial Games 

Try the following games, most of which can be analyzed as being exactly 
equivalent to games of Nim or sums of games of Nim. 

21 Takeaway 

Start with a pile of 21 coins. Each player alternates taking anywhere from 
one to three coins away from the pile. The player to take the last coin wins. 

Turning Turtles 

A horizontal line of n coins is laid out randomly with some coins showing 
heads and some tails. A move consists of turning over one of the coins from 
heads to tails, and in addition, if desired, turning over one other coin to the 
left of it (from heads to tails or tails to heads). For example consider the 
sequence of n = 13 coins: 

T H T T H T T T H H T H T 
1 2 3 4 5 6 7 8 9 10 11 12 13 

One possible move in this position is to turn the coin in place 9 from heads 
to tails, and also the coin in place 4 from tails to heads. 

The player to turn the last coin from heads to tails wins. 

Nimble 

Nimble is played on a game board consisting of a line of squares labeled: 0, 
1, 2, 3, . . . . A finite number of coins is placed on the squares with possibly 
more than one coin on a single square. A move consists of taking one of the 
coins and moving it to any square to the left, possibly moving over some of 
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the coins, and possibly onto a square already containing one or more coins. 
The players alternate moves and the game ends when all coins are on the 
square labeled 0. The last player to move wins. 

Silver Dollar Game 

From John Conway’s “On Numbers and Games”: This game is played on a 
semi-infinite strip of squares, with a finite number of coins, no one of which 
is a Silver Dollar. Each coin is placed on a separate square, and the legal 
move is to move some coin leftwards (i.e. towards the finite end of the strip), 
not passing over any other coin, onto any unoccupied square. The game ends 
when some player has no legal move, because the coins are in a traffic jam 
at the end of the strip. 

2D Nim 

This game is played exactly like Nimbles, except on a 2-dimensional checker
board. Start with 4 coins placed anywhere on the board. On each turn a 
player moves a coin either any number of squares downward or any number 
of squares left. The player to move the last coin to the bottom left corner 
square wins. 

Green Hackenbush 

Two players take turns cutting edges on a connected rooted graph or a collec
tion of connected rooted graphs. For our purposes, there will only be finitely 
many edges on the board, we will associate all the roots with ”the ground” 
and we will call the edges ”branches”. When a player cuts a branch, the 
branch dissapears along with any branches that are no longer connected to 
the ground. The player who cuts the last branch wins. 

The folloing is an example game of hackenbush: 
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Sprouts 

(This game is not so easily related back to Nim, and has not even been com
plete solved, but nevertheless has some interesting theory behind it so we 
present it here.) 

In the game of sprouts two players start with some number of dots and alter
nate making moves. A move consists of connecting two dots (called spots) 
with a curve and marking a new dot anywhere on the curve. The segments 
of curves connecting two dots are called edges. subject to the following rules: 

1. The curves do not intersect (other curves or themselves). 

2. No more than three edges emanate from any one spot. 

3. A curve may connect a spot to itself. 

The player who draws the last curve wins. Below is an example game: 
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Solutions to Some of the Games 

These hints will help you solve the games once you know the secret to Nim. 

Northcott’s Game 

The the number of spaces between the two tokens on each row are the sizes 
of the Nim heaps. This is the same as Poker Nim. If your opponent increases 
the number of spaces between two tokens, just decrease it on your next move. 
Else, play the game of Nim and make the Nim-sum of the number of spaces 
between the tokens on each row be 0. 

21 Takeaway 

Always make the size of the heap 0 mod 4 (so 20, 16, 12, etc.) 

In general, if players can take at most k coins away, always try to make 
the size of the pile 0 mod k + 1. 

Turning Turtles 

This game is essentially the same as Nim. If the turtles are numbered 1, ..., 
n from left to right, then a Turning Turtles position where the coins with 
heads showing are the ones with numbers a, b, ..., z is equivalent to a Nim 
position with heaps of size a, b, ..., z. The correspondence between moves is 
as follows: 

1. A Nim move which removes a heap of size a corresponds to flipping 
over the coin numbered a from heads to tails. 

2. A Nim move which decreases a heap from size a to size b, where there 
was no heap of size b already on the board, corresponds to flipping 
over the coin numbered a from heads to tails, and flipping over the 
coin numbered b from tails to heads. 
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3. A Nim move which decreases a heap from size a to size b, where there 
was a heap of size b already on the board, corresponds to flipping over 
the coin numbered a from heads to tails, and flipping over the coin 
numbered b from heads to tails. 

In the last case, the Nim position arrived at, as compared to the Turning 
Turtles position arrived at, has an extra pair of heaps of size b. However, the 
presence of a pair of equal heaps, or any number of pairs of equal heaps, never 
makes any difference to the outcome of a Nim game. This is because whoever 
had the win before the pairs of heaps were added can continue to play this 
strategy on the heaps originally present, and when the other player plays on 
one of the pairs of equal heaps, he can make the same play on the heap equal 
to the heap the other player moved on. In this way he is guaranteed the last 
move in the pairs of equal heaps, and as he also has the last move on the 
heaps originally present, he has the last move in the overall game. 

Nimble 

A coin on square n is the same as a nim-heap of size n. 

Silver Dollar Nim 

This one is kind of tricky. Starting from the rightmost coin, count the number 
of squares in alternate spaces between the coins, and let these numbers be 
the sizes of Nim-heaps. 

2D Nim 

This is the sum of 2 Nimble (Nim) games: one in the vertical direction and 
one in the horizontal direction. So a square at (x,y) is a heap of size x 
in the horizontal game and size y in the vertical game. By the Sprague-
Grundy theorem, you can calculate the SG value of the x and y games as 
SG(x) + SG(y), where SG(x) is just the num sum of all the x coordinates. 

Green Hackenbush 

(Much more about this game next week)

When played only with “bamboo stalks” (see pictures) each stalk with n
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segments is the same as a nim heap of size n. 

When played with a forest of “trees” (Colon Principle): When branches 
come together at a vertex, one may replace the branches by a non-branching 
stalk of length equal to their nim sum. 

For general graphs: We fuse two neighboring vertices by bringing them to
gether into a single vertex and bending the edge joining them into a loop. 
Each loop can now seen as a nim-heap of size 1. 

If we have time we’ll go over the proof of the Colon Principle. Proof for 
the fusion principle can be found in volume 1 of Winning Ways For Your 
Mathematical Plays 

Sprouts 

The analysis of this game hasn’t actually been solved for arbitrarily large 
cases. What is known is below: 

Suppose that a game starts with n spots and lasts for exactly m moves. 

Each spot starts with three lives (opportunities to connect a line) and 
each move reduces the total number of lives in the game by one (two lives 
are lost at the ends of the line, but the new spot has one life). So at the end 
of the game there are 3nm remaining lives. Each surviving spot has only one 
life (otherwise there would be another move joining that spot to itself), so 
there are exactly 3nm survivors. There must be at least one survivor, namely 
the spot added in the final move. So 3nm ≥ 1; hence a game can last no 
more than 3n1 moves. 

At the end of the game each survivor has exactly two dead neighbors, in 
a technical sense of ”neighbor”; see the diagram below. 
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No dead spot can be the neighbor of two different survivors, for otherwise 
there would be a move joining the survivors. All other dead spots (not 
neighbors of a survivor) are called pharisees (from the Hebrew for ”sepa
rated ones”). Suppose there are p pharisees. Then 

n + m = 3n − m + 2(3n − m) + p 

since initial spots + moves = total spots at end of game = survivors + 
neighbors + pharisees. Rearranging gives: 

m = 2n + p/4 

So a game lasts for at least 2n moves, and the number of pharisees is divisible 
by 4. 

Real games seem to turn into a battle over whether the number of moves 
will be m or m+1 with other possibilities being quite unlikely. One player 
tries to create enclosed regions containing survivors (thus reducing the total 
number of moves that will be played) and the other tries to create pharisees 
(thus increasing the number of moves that will be played). 

** Code Examples ** 

For those interested, I will try to include some sort of coding example each 
week. These sections will be denoted by **’s in the coursenotes. 

The problem is to code the normal play game of Nim while giving each 
player what strategy they should use. Attempt it yourself before looking at 
the solution posted online. 

This program evaluates hackenbush positions. Try making some positions, 
trying to evaluate their SG value, and then checking with the program. (The 
program also includes red-blue hackenbush which we’ll cover next week with 
surreal numbers). 
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