
SP.268 – The Mathematics of

Toys and Games




Class Overview


Instructors: 
 Jing Li (class of '11, course 14 and 18C) 

 Melissa Gymrek (class of '11, course 6 and 18) 

 Supervisor: Professor Erik Demaine (Theory of 
Computation group at CSAIL) 

Requirements: 
 Weekly attendance is mandatory! 

 Occasional Readings 

 Final projects 



Topics

 Theory of Impartial Games 

 Surreal Numbers 

 Linear Algebra and Monopoly 

 Algorithms/Complexity of Games 

 Dynamic Programming 

 Artificial Intelligence Topics 

 Rubik's Cube and Group Theory 

 Probability Topics 

 Games on Graphs 

 NP-complete games 

 Card Games 

 Constraint Logic Theory 

 Conway's Game of Life 



Theory of Impartial Games


Much of the game theory we will talk about will involve 
combinatorial games, which have the following properties: 

 There are two players 

 There is a finite set of positions available in the game 

 Players alternate turns 

 The game ends when a player can't make a move 

 The game eventually ends (not infinite) 



Types of Games


Today's topic is impartial games: 
	 The set of allowable moves depends only on the 

positions of the game and not on which of the two 
players is moving 

	 Example impartial games: Jenga, Nim, sprouts,

green hackenbush


In partisan games, the available moves depend

on which player is moving. (GO, checkers, chess)




The Game of Nim


	 Much of the foundations for combinatorial 
game theory came from analyzing the game 
of Nim 

	 Here we use Nim to learn about types of 
game positions, nimbers, and to lead into an 
important combinatorial game theory theorem 



Nim: How to Play


	 The game begins with 3 (or n) piles, or nim-
heaps of stones (or coins, or popsicle 
sticks...) 

	 Players 1 and 2 alternate taking off any 
number of stones from a pile until there are 
no stones left. 

	 In normal play, which is what we will look at, 
the player to take a stone wins. 



Example Game

Size of Heaps 

A B C 

3 4 5 

1 4 5 

1 4 2 

1 3 2 

1 2 2 

0 2 2 

0 1 2 

0 1 1 

0 0 1 

Moves 

I take 2 from A 

You take 3 from C 

I take 1 from B 

You take from B 

I take entire A heap leaving two 2's 

You take 1 from B 

I take 1 from C leaving two 1's 

You take 1 from B 

I take entire C heap and win. 



Can we find a winning strategy?


	 Yes! Nim has been solved for all starting 
positions and any number of heaps. 

	 (we will define what we mean by solution 
more rigorously later) 

	 We'll first do some work with game positions 
and ”nimbers,” and then apply them to finding 
a solution. 



Types of impartial game positions


There are two types of positions in an impartial 
game: 

 P Position: secures a win for the Previous player 
(the one who just moved) 

 Example: a game of Nim with three heaps (1,1,0) 
 N Position: secures a win for the Next player 

 Example: a game of Nim with three heaps (0,0,1) 
 Terminal Position: a position with no more 

available moves 



Types of impartial game positions


	 To determine whether a Nim (or any other impartial game) 
position is N or P, we work back words from the end of the 
game to the beginning using backwards induction 

1. Label every terminal position as P 

2. Label every position that can reach a P position as N 

3. For positions that only move to N positions, label as 
P. 

4. At this point either all positions are labeled, or return 
to step 2 and repeat the process until all positions are 
labeled. 



Types of impartial game positions


	 For example, in Nim, the only terminal 

position (in other games we might have 

many) is (0,0,0).


	 Any position (0,0,n) must be an N position,

since the next player can just take the last

heap in the next turn.




Types of impartial game positions




Practice with N and P positions


	 Consider the Nim-like subtraction game in which you start 
with a pile of chips (note here we have only a single pile), 
and players alternate taking away either 1, 3 or 4 chips 
from the pile. The player to take the last chip loses. 

	 We see that 1, 3, and 4 must be N-positions, since the next 
player can take all the chips. 0 must be a P-position, since 
the player that last moved wins. 2 must be a P-position, 
since the only legal move to 2 is from an N-position (2 can 
move only to 1). Then 5 and 6 must be N positions since 
they can be moved to 2... continue the analysis up to x = 
14: 



Practice with N and P positions 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Pos P N P N N N N 

Finish the game configuration 
assignments... 



Practice with N and P positions 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Pos P N P N N N N P N P N N N N P 

Note: this sequence of Ns and Ps (PNPNNNN) continues forever. In fact, 
almost all subtraction games have similar periodic sequences of N and P 
values. 



Nimber Arithmetic


	 The key operation we will use in our solution 
to Nim will be nimber addition, which is just 
binary addition without carrying. We can also 
describe this as writing out the numbers to 
add in binary, then XORing the numbers bit 
by bit. 

	 We denote the nim-sum operation by the 
following symbol (but we'll usually just use a 
”+” sign here): 8 8 = 0 



Binary logic refresher


 Recall, to read/write numbers in binary: 

The bits in a binary number represent powers 
of 2: 

0 1 0 1 1 = 2^3+2^1+2^0 = 11 

2^4 2^3 2^2 2^1 2^0 
 XORing: 

1+1 = 0, 1+0 = 1, 0 + 0 = 0 



----------------------- ---------------------

Nimber Addition Examples 

3 011	 4 010 

+ 5	 100 + 4 010 

7 111 0 000 



The Nim addition table 

Image by MIT OpenCourseWare.



Solution to Nim


	 Now we can finally find the solution to Nim! 
	 Notice that if we take the nim-sum of all the 

nim-heaps, at the end of the game the nim-
sum will always be 0 (since we are adding 
0+0+0). 

	 But there are other points in the game when 
the nim-sum will be 0, for intance (0,n,n), 
since any n +n = 0. 



Solution to Nim


 Theorem: The winning strategy in normal play 
Nim is to finish every move with a nim-sum of 
0. 

To prove this we will first prove two lemmas... 



Solution to Nim


	 Lemma 1: If the nim-sum is 0 after a player's 
turn, then the next move must change the 
nim-sum to be nonzero. 

	 Proof... (in lecture notes and given in class) 



Solution to Nim


	 Lemma 2: It is always possible to make te 
nim-sum 0 on your turn if it wasn't already 0 
at the beginning of your turn. 

	 Proof... (in lecture notes and given in class) 



Solution to Nim


	 Proof of the original theorem: 
If you start off by making your first move so that the nim-
sum is 0, then on each turn, by lemma 1, your opponent 
has no choice but to disturb the sum and make it non-zero. 
By lemma 2, you can always move to set it back to 0. 
Eventually on your turn there will be no stones left and the 
game will have a nim-sum of 0, and you will win! (If the 
nim-sum starts at 0 and you go first, you must hope your 
opponent messes up at some point, or else he has the 
winning strategy...) 



Solution to Nim


	 From our analysis above, we can see that 
any nim position in which the nim-sum of the 
heaps is 0 is a P-position, otherwise it is an 
N-position. 



Nim – Practical Strategy


	 Whenever possible, reduce the heaps to two non-zero 
heaps containing the same number of coins each. This 
obviously has a nim-sum of 0. Now just mimic your 
opponent's move each time on the opposite heap to keep 
the two heaps equal until you are able to take the final 
coin. 

	 Since doing binary addition is kind of hard in your head for 
large numbers, an easier strategy is to try to always leave 
even subpiles of the subpowers of 2, starting with the 
largest power possible (essentially the same as binary 
addition, but easier to think about) 



Variations on (disguises of) Nim


Why are these the same as Nim? 

	 Poker Nim: Like regular Nim, but now a player can either 
add more chips to a heap or subtract chips from heap 
(known as bogus nim heaps). What is the winning 
strategy? 

	 Northcott's Game: checkerboard with one white and one 
black checker on each row. Players alternate moving their 
color checker piece any number of positions along a row 
but may not jump over or onto another checker. Players 
move until no one can make another move. (this game is 
neither impartial nor finite but we can use our nim strategy) 



Sprague-Grundy Theorem


	 Now we'll use Nim to help us derive the 
fundamental theorem of impartial games, the 
Sprague-Grundy Theorem. 

	 We'll start by using graphs to describe 
impartial game positions. 



From Games to Graphs

	 Let a game consist of a graph G = (X,F) where: 

	 X is the set of all possible game positions 
	 F is a functions that gives for each x in X a subset of 

possible x's to move to, called followers. If F(x) is empty, 
the position x is terminal. 

 Start position is x in X. So player 1 moves first from x . 
0	 0 

	 Players alternate moves. A position x, the player chooses 
from y in F(x). 

	 The player confronted with the empty set F(x) loses. 
	 We call our graph progressively bounded if from every start 

position x , every path has finite length. So the graph is finite 
0

and acyclic. 



From Games to Graphs


	 The following is an example of the graph for the 
Subtraction Game that we saw before (starting with 10 
coins in the heap. The person that makes the total number 
of coins 0 on his or her turn wins. 

0
1 2 3 4 5 6 7 8 9

10

Image by MIT OpenCourseWare.



The Sprague Grundy Function


	 The Sprague-Grundy function of a graph G 
= (X,F) is a function g defined on X that takes 
only non-negative integer values and is 
computed as follows: 



The Sprague-Grundy Function


	 In words, the Sprague-Grundy function (I'll 
call it SG) is the smallest non-negative value 
not found among the SG values of the 
followers of x. 

	 This is formally known as the mex function, or 
Minimum Excluded Value. 

 Examples 
mex({2,4,5,6}) = 0 

mex({0,1,2,6}) = 3 



The Sprague-Grundy Function


	 So we can rewrite the SG function as: 

	 Notice this function is defined recursively. That is, the 
definition of g(x) uses g itself. So we'll need some base 
cases. Set all terminal nodes x to have g(x) = 0. Then any 
nodes that have only terminal nodes as followers have g(x) 
= 1. In this way we can work our way through the graph 
until all nodes are assigned an SG value. 



SG Function Example


 Try assigning SG values to the graph below. 
Start by assigning each node N or P: 

Image by MIT OpenCourseWare.



SG Function Example 

 You should end up with the following: 

N

N

P

PP

N

Image by MIT OpenCourseWare.



SG Function Example


	 Now we can label all the SG values. Start with 
the terminal positions set to 0. Any node 
pointing to a terminal gets a 1. The node 
pointing to only 0 and 1 should be labeled 2, 
and so forth. 



SG Function Example


 You should end up with the following SG 
assignments: 

2

3

0

00

1

Image by MIT OpenCourseWare.



SG Function


	 Notice that all vertices that have an SG value 
of 0 are P positions! All others are N. 

	 It seems that a good strategy on such a 
graph-game would be to move to a vertex 
with g(x) = 0. 



SG Example 2

	 Consider the ”21 subtraction game.” You and a friend start 

with 21 coins, and then take turns taking up to 3 coins away 
at a time. The person to take the last coin wins. 

	 We can see that the position with 4 coins left is a P position. 
The next player must reduce the pile to some number within 
the range 1-3, and so the player after him can win. Below are 
the SG values for this game: 

x 0 1 2 3 4 5 6 … 

g(x) 0 1 2 3 0 1 2 … 

or in other words, g(x) = x mod 4. 

	 For the game of Nim with one heap, the function is just g(x) = 
x. 



Adding Games (Graphs)


	 An advantage of using the SG function is that we can 
break up games into smaller parts and add their graphs 
together to make one big game. 

	 We call this the disjunctive sum of two games. 

	 To take the disjunctive sum of games G and H, players 
can move on their turn in either the game G or the game 
H, and the entire game is over when both G and H are at 
terminal positions. 



Adding Games


	 To sum the games G1 = (X1,F1), G2 = 
(X2,F2), ....GN = (XN,FN), 

G(X,f) = G1+G2+...+GN, where 
	 X = X1 x X2 x … x XN (or the set of all n-tuples 

such that xi in X for all i. 
	 The maximum number of moves is the sum of the 

maximum number of moves in each component 
game. 



AA

Adding Games


	 Here is an example of adding two games on 
graphs, G and H: 

B C 

D 

A	 G E 

F 

G 

H 
AE 

AF 

AG 

BE 

BF 

BG 

CE 

CF 

CG 

DE 

DF 

DG 

G+H 



SG Theorem


	 If g_i is the Sprague-Grundy function of Gi, i = 
1,2, .... n, then G = G1+.....+GN has Sprague-
Grundy function g(x1....xn) = 
g1(x1)+g2(x2)+....+gn(xn) 

	 Proof... (outlined here and shown in lecture 
notes and in class) 



SG Theorem


	 Let x = (x1, .... xn) be an arbitary point of X. 
Let b = g1(x1)+...gn(xn). We are to show two 
things for the function g(x1.... xn): 
	 For every non-negative integer a < b, there is a 

follower of (x1....xn) that has a g-value a. 
	 No follower of (x1....xn) has g-value b. 

	 Then the SG value of x, being the smallest 
SG-value not assumed by one of its followers, 
must be b. 



Games to try


 Variations on Nim 
 Green Hackenbush 
 Sprouts 
 more! 



Further Reading


 Winning Ways
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