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Maxwell’s Equations and Electromagnetic Waves 

13.1 The Displacement Current 

In Chapter 9, we learned that if a current-carrying wire possesses certain symmetry, the 
magnetic field can be obtained by using Ampere’s law:  

�∫ B 
r 
⋅ d s r = μ I (13.1.1)0 enc  

The equation states that the line integral of a magnetic field around an arbitrary closed 
loop is equal to μ I , where I is the conduction current passing through the surface 0 enc  enc 

bound by the closed path. In addition, we also learned in Chapter 10 that, as a 
consequence of the Faraday’s law of induction, a changing magnetic field can produce an 
electric field, according to 

r r d r r 
�∫ E ⋅ d s = −  

dt ∫∫  B ⋅ dA (13.1.2) 
S 

One might then wonder whether or not the converse could be true, namely, a changing 
electric field produces a magnetic field. If so, then the right-hand side of Eq. (13.1.1) will 

r r 
have to be modified to reflect such “symmetry” between E and B . 

To see how magnetic fields can be created by a time-varying electric field, consider a 
capacitor which is being charged. During the charging process, the electric field strength 
increases with time as more charge is accumulated on the plates. The conduction current 
that carries the charges also produces a magnetic field. In order to apply Ampere’s law to 
calculate this field, let us choose curve C shown in Figure 13.1.1 to be the Amperian loop.  

Figure 13.1.1 Surfaces S1  and S2 bound by curve C. 
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If the surface bounded by the path is the flat surface S1 , then the enclosed current 
is Ienc = I . On the other hand, if we choose S2 to be the surface bounded by the curve, 
then Ienc = 0 since no current passes through S2 . Thus, we see that there exists an 
ambiguity in choosing the appropriate surface bounded by the curve C. 

Maxwell showed that the ambiguity can be resolved by adding to the right-hand side of 
the Ampere’s law an extra term 

dΦId = ε0 
E (13.1.3)

dt 

which he called the “displacement current.” The term involves a change in electric flux. 
The generalized Ampere’s (or the Ampere-Maxwell) law now reads 

�∫ B 
r 
⋅ d s r = μ I + μ ε  

d
dt 
ΦE = μ0 (I + I ) (13.1.4)0 0 0 d 

The origin of the displacement current can be understood as follows:  

Figure 13.1.2 Displacement through S2 

In Figure 13.1.2, the electric flux which passes through S2 is given by 

Φ =  
r 
⋅ d 
r 

= EA  = 
Q (13.1.5)E �∫∫ E A  
εS 0 

where A is the area of the capacitor plates. From Eq. (13.1.3), we readily see that the 
displacement current Id  is related to the rate of increase of charge on the plate by 

Id = ε0 
dΦE = dQ (13.1.6)

dt dt 

However, the right-hand-side of the expression, /dQ dt , is simply equal to the conduction 
current, I . Thus, we conclude that the conduction current that passes through S1 is 
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precisely equal to the displacement current that passes through S2, namely I = Id . With 
the Ampere-Maxwell law, the ambiguity in choosing the surface bound by the Amperian 
loop is removed.  

13.2 Gauss’s Law for Magnetism 

We have seen that Gauss’s law for electrostatics states that the electric flux through a 
closed surface is proportional to the charge enclosed (Figure 13.2.1a). The electric field 
lines originate from the positive charge (source) and terminate at the negative charge 
(sink). One would then be tempted to write down the magnetic equivalent as 

r r QmΦ =  ⋅d = (13.2.1)B �∫∫ B A  
μS 0 

where Qm is the magnetic charge (monopole) enclosed by the Gaussian surface. However, 
despite intense search effort, no isolated magnetic monopole has ever been observed. 
Hence, Qm = 0and Gauss’s law for magnetism becomes 

r r 
Φ =  � ⋅d = 0 (13.2.2)∫∫ B AB 

S 

Figure 13.2.1 Gauss’s law for (a) electrostatics, and (b) magnetism. 

This implies that the number of magnetic field lines entering a closed surface is equal to 
the number of field lines leaving the surface. That is, there is no source or sink. In 
addition, the lines must be continuous with no starting or end points. In fact, as shown in 
Figure 13.2.1(b) for a bar magnet, the field lines that emanate from the north pole to the 
south pole outside the magnet return within the magnet and form a closed loop.  

13.3 Maxwell’s Equations 

We now have four equations which form the foundation of electromagnetic phenomena:  
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Law Equation Physical Interpretation 

Gauss's law for E 
r 

0S 

Qd 
ε 

⋅ =∫∫ E A  
rr 

� Electric flux through a closed surface 
is proportional to the charged enclosed 

Faraday's law Bdd 
dt 
Φ ⋅ = −∫ E  s  

r r 
� 

Changing magnetic flux produces an 
electric field 

Gauss's law for B 
r 0 

S 

⋅d =∫∫ B A  
rr 

� The total magnetic flux through a 
closed surface is zero 

Ampere − Maxwell law 0 0 0 
Edd I 

dt
μ  μ  ε  

Φ ⋅ = +∫ B  s  
r r 
� 

Electric current and changing electric 
flux produces a magnetic field 

Collectively they are known as Maxwell’s equations. The above equations may also be 
written in differential forms as  

r ρ∇ ⋅E = 
ε0 

r 
r ∂B∇×E = − 

∂t (13.3.1) 
r 

∇⋅B = 0 
r 

r r ∂E∇×B = μ J + μ ε  0 0 0 ∂t 

r 
where ρ and J are the free charge and the conduction current densities, respectively. In 
the absence of sources whereQ = 0, I = 0 , the above equations become 

r r 
�∫∫ ⋅d = 0E A  

S 

�∫ 
r 
⋅d r − dΦBE s  =
r r 

dt (13.3.2) 
�∫∫ ⋅d = 0B A  

S 

r r dΦ 
�∫ B s  0 0  

E⋅d = μ ε  
dt 

An important consequence of Maxwell’s equations, as we shall see below, is the 
prediction of the existence of electromagnetic waves that travel with speed of light 
c =1/ μ ε . The reason is due to the fact that a changing electric field produces a 0 0  

magnetic field and vice versa, and the coupling between the two fields leads to the 
generation of electromagnetic waves. The prediction was confirmed by H. Hertz in 1887. 
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13.4 Plane Electromagnetic Waves 

To examine the properties of the electromagnetic waves, let’s consider for simplicity an 
pointing

r 
Eelectromagnetic wave propagating in the + -direction, with the electric field x 

r

in the +y-direction and the magnetic field B in the +z-direction, as shown in Figure 13.4.1 
below. 

Figure 13.4.1 A plane electromagnetic wave 

r
r

What we have here is an example of a plane wave since at any instant both E and B are 
uniform over any plane perpendicular to the direction of propagation. In addition, the 

rr
wave is transverse because both fields are perpendicular to the direction of propagation, 
which points in the direction of the cross product × .E B  

Using Maxwell’s equations, we may obtain the relationship between the magnitudes of 
the fields. To see this, consider a rectangular loop which lies in the xy plane, with the left 
side of the loop at x and the right at x + Δx . The bottom side of the loop is located at y , 
and the top side of the loop is located at y + Δy , as shown in Figure 13.4.2. Let the unit 

ˆ = ˆvector normal to the loop be in the positive z-direction, n k  . 

r


∫�


Figure 13.4.2 Spatial variation of the electric field E 

Using Faraday’s law 

dr
 r
 r
rdE s  = − 
∫∫ 
B dA (13.4.1)
⋅
 ⋅

dt 
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the left-hand-side can be written as 

r ∂E 
�∫ E s⋅dr = Ey (x + Δ Δx) y − Ey ( )  x Δy = [Ey (x + Δx) − Ey (  )]  x Δy = y (Δ  Δ  x y) (13.4.2)

∂x 

where we have made the expansion 

∂E
E x( + Δx) E x + y Δx K= ( )  + (13.4.3)y y ∂x 

On the other hand, the rate of change of magnetic flux on the right-hand-side is given by  

r 

dt
d r

⋅d = −⎜⎝
⎛ ∂

∂ 

B
t

z ⎟
⎞
⎠
(Δ Δx y) (13.4.4)− ∫∫B A  

Equating the two expressions and dividing through by the area x  yieldsΔ Δ y

∂Ey = − ∂Bz (13.4.5)
∂x ∂t 

The second condition on the relationship between the electric and magnetic fields may be 
deduced by using the Ampere-Maxwell equation: 

r r d r r 
⋅d = μ ε  E ⋅dA (13.4.6)�∫ B s  0 0  dt ∫∫  

Consider a rectangular loop in the xz plane depicted in Figure 13.4.3, with a unit normal 
n̂ = ĵ . 

r 
Figure 13.4.3 Spatial variation of the magnetic field B 

The line integral of the magnetic field is  
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r r 
�∫ B s  ) B x  B x  )]  ⋅d = B x  z B x  ( )Δ −  ( x z  = [  ( )  − ( + Δ  x Δz+ Δ  Δ  z z z z 

= −⎛
⎜ 
∂Bz ⎞(Δ  Δ  ) 

(13.4.7) 

⎝ ∂x ⎠⎟ 
x z  

On the other hand, the time derivative of the electric flux is 

d r r ⎛ ∂E ⎞
∫∫E A = μ ε ⎜ ( x z  )μ ε  ⋅d y

⎟ Δ Δ  (13.4.8)0 0  0 0dt ⎝ ∂t ⎠ 

Equating the two equations and dividing by Δ Δx z , we have 

∂B ⎛ ∂E ⎞
− z = 0 0  

y
⎟ (13.4.9)μ ε  ⎜∂x ⎝ ∂t ⎠

The result indicates that a time-varying electric field is generated by a spatially varying 
magnetic field.  

Using Eqs. (13.4.4) and (13.4.8), one may verify that both the electric and magnetic fields 
satisfy the one-dimensional wave equation. 

To show this, we first take another partial derivative of Eq. (13.4.5) with respect to x, and 
then another partial derivative of Eq. (13.4.9) with respect to t: 

z z 
∂2 E 

2 
y = −  

∂ ⎛ ∂B ⎞
⎟ = − ∂ ⎛

⎜
∂B ⎞

⎟ = − ∂ ⎛
⎜− 0 0  

∂Ey ⎞
⎟ = μ ε0 0  

∂2 E 
2 

y (13.4.10)⎜ μ ε  
∂x ∂x ⎝ ∂t ⎠ ∂t ⎝ ∂x ⎠ ∂t ⎝ ∂t ⎠ ∂t 

noting the interchangeability of the partial differentiations:  

∂
∂ 

x 
⎛
⎜⎝ 
∂
∂ 

B
t

z ⎞
⎟⎠
= 

∂
∂ 

t 
⎛
⎜⎝ 
∂
∂ 

B
x

z ⎞
⎟⎠

 (13.4.11) 

Similarly, taking another partial derivative of Eq. (13.4.9) with respect to x yields, and 
then another partial derivative of Eq. (13.4.5) with respect to t gives 

∂2 Bz = − ∂ ⎛μ ε  
∂Ey ⎞

= −μ ε  
∂ ⎛ ∂Ey ⎞

= −μ ε  
∂ ⎛− ∂Bz ⎞ = μ ε  

∂2 Bz (13.4.12)
∂x2 ∂x ⎜⎝ 

0 0 ∂t ⎟
⎠ 

0 0  ∂t ⎜⎝ ∂x ⎟⎠ 
0 0  ∂t ⎜⎝ ∂t ⎟⎠ 0 0  ∂t 2 

The results may be summarized as: 

⎛ ∂ ⎧E x
⎜ 

2 

− μ ε0 0  
∂2 ⎞

⎟ ⎨ 
y ( , )  t ⎫

⎬ = 0 (13.4.13)
∂x2 ∂t 2 

⎠ ⎩B x( , )  t ⎭⎝ z 
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Recall that the general form of a one-dimensional wave equation is given by 

⎛ ∂2 1 ∂2 ⎞ 
⎜ − ⎟ ( , )  = 0 (13.4.14)ψ x t  
⎝ ∂x2 v2 ∂t 2 

⎠

where v is the speed of propagation and ψ ( , )x t is the wave function, we see clearly that 
both Ey and Bz satisfy the wave equation and propagate with the speed of light: 

1 1 8v = = = 2.997 10 m/s = c (13.4.15)×

μ ε  −7 T m/A)(8.85 10 −12  2  ⋅ 2


0 0  (4 π ×10 ⋅ × C /N m ) 

Thus, we conclude that light is an electromagnetic wave. The spectrum of 
electromagnetic waves is shown in Figure 13.4.4. 

Figure 13.4.4 Electromagnetic spectrum 

13.4.1 One-Dimensional Wave Equation 

It is straightforward to verify that any function of the form ψ (x ± vt) satisfies the one-
dimensional wave equation shown in Eq. (13.4.14). The proof proceeds as follows: 

Let x′ = ±x vt   which yields ∂x′ / ∂x =1 and ∂x′ / ∂  = ±  v . Using chain rule, the first two t 
partial derivatives with respect to x are  

( )x 
x 

ψ ′∂ 

∂ 
= 

x 
x x  
ψ ′∂ ∂ 
′∂ ∂ 

= 
x 
ψ∂ 
′∂

 (13.4.16) 
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∂2ψ ∂ ⎛ ∂ψ ⎞ ∂2ψ ∂x′ ∂2ψ

∂x2 =

∂x ⎜⎝ ∂x′ ⎠⎟
= 

∂x′2 ∂x 
=

∂x′2 (13.4.17) 


Similarly, the partial derivatives in t are given by 

∂ψ ∂ψ ∂x′ ∂ψ =  = ±  v (13.4.18)
∂t ∂x′ ∂t ∂x′ 

∂2ψ ∂ ⎛ ∂ψ ⎞ ∂2ψ ∂x′ ∂2ψ 
∂t 2 =

∂t ⎜⎝
±v 

∂x′ ⎟⎠
=  ±  v 

∂x′2 ∂t 
= v2 

∂x′2 (13.4.19) 

Comparing Eq. (13.4.17) with Eq. (13.4.19), we have 

∂2ψ ∂2ψ 1 ∂2ψ = = (13.4.20)
∂x '2 ∂x2 v2 ∂t2 

which shows that ψ (x± vt) satisfies the one-dimensional wave equation. The wave 
equation is an example of a linear differential equation, which means that if ψ1( , )x t and 
ψ 2 x t are solutions to the wave equation, then ψ ( , )  ±ψ 2 x t  ( , ) 1 x t (  ,  )  is also a solution. The 
implication is that electromagnetic waves obey the superposition principle.  

One possible solution to the wave equations is  

r 
= y ( , )  ĵ = E0 cos  k x  ( − vt) ĵ = E0 cos(  kx −ωt) ĵE E x t  

(13.4.21)r
B = Bz ( , )  x t k̂ = B0 cos  k x  ( − vt)k̂ = B0 cos(  kx −ωt)k̂ 

where the fields are sinusoidal, with amplitudes E0 and B0 . The angular wave number k is 
related to the wavelength λ by 

2πk =  (13.4.22)
λ 

and the angular frequency ω  is 

ω = kv = 2π 
v = 2π f (13.4.23)
λ 

where f is the linear frequency. In empty space the wave propagates at the speed of light, 
v c . The characteristic behavior of the sinusoidal electromagnetic wave is illustrated in = 
Figure 13.4.5. 

13-11 



Figure 13.4.5 Plane electromagnetic wave propagating in the +x direction. 

r r 
We see that the E and B fields are always in phase (attaining maxima and minima at the 
same time.) To obtain the relationship between the field amplitudes E0 and B0 , we make 
use of Eqs. (13.4.4) and (13.4.8). Taking the partial derivatives leads to 

∂Ey = −kE0 sin(kx −ωt) (13.4.24)
∂x 

and 

∂Bz =ωB0 sin(kx −ωt) (13.4.25)
∂t 

which implies E k  =ωB , or0 0 

E0 ω = = c (13.4.26)
B0 k 

From Eqs. (13.4.20) and (13.4.21), one may easily show that the magnitudes of the fields 
at any instant are related by  

E = c (13.4.27)
B 

Let us summarize the important features of electromagnetic waves described in Eq. 
(13.4.21): 

r r 
1. The wave is transverse since both E and B fields are perpendicular to the direction 

r r  
of propagation, which points in the direction of the cross product × .E B  

r r 
2. The E and B fields are perpendicular to each other. Therefore, their dot product 

r r  
vanishes, ⋅ = 0E B  . 
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3. The ratio of the magnitudes and the amplitudes of the fields is 

E E0 ω = = = c
B B 0 k 

4. The speed of propagation in vacuum is equal to the speed of light, c =1/ 0 0μ ε . 

5. Electromagnetic waves obey the superposition principle. 

13.5 Standing Electromagnetic Waves 

Let us examine the situation where there are two sinusoidal plane electromagnetic waves, 
one traveling in the +x-direction, with  

( , )  = E cos(  k x  −ω t),  B ( , )  = B cos(  k x  −ω t) (13.5.1)E x t  x t  1y 10  1 1  1z 10  1 1  

and the other traveling in the −x-direction, with 

( , ) = −E cos( k x  +ω t), B (x t  , ) = B cos( k x  +ω t)E2 y x t  20  2 2  2z 20  2  2  (13.5.2) 

For simplicity, we assume that these electromagnetic waves have the same amplitudes 
( E10 = E20 = E0 , B10 = B20 = B0 ) and wavelengths ( k1 = k2 = k, ω1 =ω2 =ω ). Using the 
superposition principle, the electric field and the magnetic fields can be written as  

y ( , )  = E1y ( , )  + E2 y x t  = E0 [cos(  kx −ωt) − cos(  ]E  x t  x t  ( , )  kx +ωt) (13.5.3) 

and 

( , )  = B (  , )  + B ( , )  x t  = B [cos(  k −ωt) + cos(  kx +ωt)] (13.5.4)Bz x t  1z x t  2 z 0 x 

Using the identities

 cos( ± ) = cos α cos β m sin α sin α β  β  (13.5.5) 

The above expressions may be rewritten as  

y ( , ) = E0E x t [cos kx cos ωt + sin kx sinωt − cos kx cos ωt + sin kxsin ωt] 
(13.5.6) 

= 2 sin  E0 kx sin  ωt 
and 
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B (x t , ) = B [cos kx cos ωt + sin kx sinωt + cos kx cosωt − sin kx sinωt] 
(13.5.7)z 0 

B0 ωt= 2 cos  kx  cos  

One may verify that the total fields y ( , )  and Bz ( , ) still satisfy the wave equation E x t x t  
stated in Eq. (13.4.13), even though they no longer have the form of functions of kx ±ωt . 
The waves described by Eqs. (13.5.6) and (13.5.7) are standing waves, which do not 
propagate but simply oscillate in space and time. 

Let’s first examine the spatial dependence of the fields. Eq. (13.5.6) shows that the total 
electric field remains zero at all times if sin kx = 0 , or 

nπ nπ nλ n 0,1,2,K
  (nodal planes of 
r 
E
) (13.5.8)
x = = =
 =


k 2 /π λ  2
, 

The planes that contain these points are called the nodal planes of the electric field. On 
the other hand, when sin kx = ±1, or 

⎛ 1 ⎞ π ⎛ 1 ⎞ π ⎛ n 1 ⎞ 
⎜n + n λ, n 0,1,2,
⎝ 2 ⎠ ⎝ ⎠ 2 ⎝ ⎠ 

K
  (anti-nodal planes of 
r 
E
)
+
 +
x =
 =
 =
 =
⎟
 ⎜
 ⎟
 ⎜
 ⎟
/π λk 2
 2 4


(13.5.9) 

the amplitude of the field is at its maximum 2E0 . The planes that contain these points are 
the anti-nodal planes of the electric field. Note that in between two nodal planes, there is 
an anti-nodal plane, and vice versa. 

For the magnetic field, the nodal planes must contain points which meets the condition 
cos kx = 0 . This yields 

⎛ n 1 ⎞ π ⎛ n 1 ⎞λ, n 0,1,2,K
  (nodal planes of 
r 
B
) (13.5.10)
+
 +
x =
 =
 =
⎜⎝ ⎟⎠ ⎜⎝ ⎟⎠2
 k 2 4


r 
B
contain points that satisfy cos kx = ±1 , orSimilarly, the anti-nodal planes for 

nπ nπ nλ x = = = , n = 
k 2 /π λ  2 

0,1,2,
K
  (anti-nodal planes of 
r 
B
)
 (13.5.11) 


r 
B
Thus, we see that a nodal plane of 

r 
E
corresponds to an anti-nodal plane of , and vice 

versa. 

For the time dependence, Eq. (13.5.6) shows that the electric field is zero everywhere 
when sinωt = 0 , or 
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nπ nπ nT  t = = = , n = 0,1,2, K  (13.5.12)
ω π2 /T 2 

where T =1/ f = 2 /π ω is the period. However, this is precisely the maximum condition 
for the magnetic field. Thus, unlike the traveling electromagnetic wave in which the 
electric and the magnetic fields are always in phase, in standing electromagnetic waves, 
the two fields are 90° out of phase. 

Standing electromagnetic waves can be formed by confining the electromagnetic waves 
within two perfectly reflecting conductors, as shown in Figure 13.4.6. 

Figure 13.4.6 Formation of standing electromagnetic waves using two perfectly 
reflecting conductors. 

13.6 Poynting Vector 

In Chapters 5 and 11 we had seen that electric and magnetic fields store energy. Thus, 
energy can also be carried by the electromagnetic waves which consist of both fields. 
Consider a plane electromagnetic wave passing through a small volume element of area A 
and thickness dx , as shown in Figure 13.6.1. 

Figure 13.6.1 Electromagnetic wave passing through a volume element 

The total energy in the volume element is given by 
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dU = uAdx = (uE + uB )Adx = 
1 ⎛
⎜ ε0 E

2 + 
B2 ⎞

⎟ Adx (13.6.1)
2 ⎝ μ0 ⎠

where 

uE = 
1
2 
ε0 E

2 , uB = 2 
B 
μ 

2

0 

(13.6.2) 

are the energy densities associated with the electric and magnetic fields. Since the 
electromagnetic wave propagates with the speed of light c , the amount of time it takes 
for the wave to move through the volume element is dt = dx / c . Thus, one may obtain 
the rate of change of energy per unit area, denoted with the symbol S , as 

S = 
dU = 

c ⎛
⎜ ε0 E

2 + 
B2 ⎞

⎟ (13.6.3)
Adt  2 ⎝ μ0 ⎠

The SI unit of S  is W/m2. =  and c = 1/ 0 0Noting that E cB μ ε , the above expression 
may be rewritten as  

S = 
c ⎛
⎜ ε0 E

2 + 
B2 ⎞

⎟ = 
cB  2 

= cε0 E
2 = 

EB  (13.6.4)
2 ⎝ μ0 ⎠ μ0 μ0 

In general, the rate of the energy flow per unit area may be described by the Poynting 
r

vector S  (after the British physicist John Poynting), which is defined as 

r rr 1S = E B  × (13.6.5)
μ0 

r r r 
with S pointing in the direction of propagation. Since the fields E and B are 

r
perpendicular, we may readily verify that the magnitude of S is 

r r 
r ×E B  EB| |=S = = S (13.6.6)

μ0 μ0 

As an example, suppose the electric component of the plane electromagnetic wave is 
E 
r 
= E0 cos(kx  −ωt) ĵ . The corresponding magnetic component is B 

r 
= B0 cos(kx −ωt)k̂ , 

and the direction of propagation is +x. The Poynting vector can be obtained as 

r
0 0  2S = 

1 (E cos(kx  −ωt) ĵ)×(B cos( kx  −ωt)k̂ )= 
E B  cos ( kx  −ωt)î (13.6.7)

μ0
0 0 μ0 
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Figure 13.6.2 Poynting vector for a plane wave 

r
As expected, S  points in the direction of wave propagation (see Figure 13.6.2).  

The intensity of the wave, I, defined as the time average of  S, is given by 

E B  E B E2 cB  2 
2= 0 0I = S cos ( kx  −ωt) = 0 0  = 0 = 0 (13.6.8)

2μ 2cμ 2μμ0 0 0 0 

where we have used 
12cos ( kx −ωt) =  (13.6.9)
2 

To relate intensity to the energy density, we first note the equality between the electric 
and the magnetic energy densities: 

uB = 
2 
B 
μ 

2

0 

= 
( / )  E 

2μ 
c 

0

2 

= 
2c

E 
2

2 

μ0 

= ε0

2 
E2 

=uE (13.6.10) 

The average total energy density then becomes 

E2u = uE + uB = ε0 E0
2=ε0 2 

2 = B0
2 (13.6.11)

1 = B
μ0 2μ0 

Thus, the intensity is related to the average energy density by 

I = S = c u  (13.6.12) 

Example 13.1: Solar Constant 

At the upper surface of the Earth’s atmosphere, the time-averaged magnitude of the 
3Poynting vector, = 1.35×10 W m 2 , is referred to as the solar constant.S 
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(a) Assuming that the Sun’s electromagnetic radiation is a plane sinusoidal wave, what 
are the magnitudes of the electric and magnetic fields? 

(b) What is the total time-averaged power radiated by the Sun? The mean Sun-Earth 
distance is R = 1.50×1011m . 

Solution: 

(a) The time-averaged Poynting vector is related to the amplitude of the electric field by 

S = 
c ε E2 . 
2 0 0  

Thus, the amplitude of the electric field is 

m s 

3 22 1.35  ×10  W m  
= =1.01 10 V m × 3 .

8 −12  2  2
E0 = 

2 
cε 

S 

(3.0×10 
( 

)(8.85 ×10 C 
) 

N m ⋅ )0 

The corresponding amplitude of the magnetic field is 

E0 1.01 10 V m × 3 
−6B0 = = 8 = 3.4×10  T . 

c 3.0×10 m s 

Note that the associated magnetic field is less than one-tenth the Earth’s magnetic field. 

(b) The total time averaged power radiated by the Sun at the distance R  is 

2 3  2  11  26  P = S A = S 4π R = (1.35 ×10 W m )4π (1.50×10 m)2 
= 3.8 ×10  W 

The type of wave discussed in the example above is a spherical wave (Figure 13.6.3a), 
which originates from a “point-like” source. The intensity at a distance r from the source 
is 

P
I = S =  (13.6.13)

4π r2 

which decreases as 1/ r 2 . On the other hand, the intensity of a plane wave (Figure 13.6.3b) 
remains constant and there is no spreading in its energy. 
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Figure 13.6.3 (a) a spherical wave, and (b) plane wave. 

Example 13.2: Intensity of a Standing Wave 

Compute the intensity of the standing electromagnetic wave given by 

y ( , ) = 2E0 cos kx  cos ωt, Bz ( , ) = 2B0 sinE x t  x t  kx  sin ωt 

Solution: 

The Poynting vector for the standing wave is 

r r  
E BS 

r
= 

μ
× =

μ 
1 (2E0 cos kx  cos ωt ̂j) (2 × B0 sin kx  sin ωt k̂) 

0 0 

E B  = 
4 0 0  (sin kx cos kx sin ωt cos ωt)î (13.6.14)
μ0 

E B  = 0 0  (sin 2 kx sin 2 ωt )î
μ0 

The time average of S  is 

E BS = 0 0  sin 2 kx  sin 2 ωt = 0 (13.6.15)
μ0 

The result is to be expected since the standing wave does not propagate. Alternatively, we 
may say that the energy carried by the two waves traveling in the opposite directions to 
form the standing wave exactly cancel each other, with no net energy transfer. 

13.6.1 Energy Transport 

r 
Since the Poynting vector S represents the rate of the energy flow per unit area, the rate 
of change of energy in a system can be written as 

r rdU = −  ⋅d (13.6.16)�∫∫ S A
dt 
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r 
where dA = dA  n̂ , where n̂ is a unit vector in the outward normal direction. The above 

r 
expression allows us to interpret S as the energy flux density, in analogy to the current 

r
density J in 

r r 
I = dQ = d (13.6.17)∫∫ J A⋅ 

dt 

r 
If energy flows out of the system, then S = S n̂ and dU / dt < 0 , showing an overall 
decrease of energy in the system. On the other hand, if energy flows into the system, then 
r 
= −n̂ and dU / dt > 0 , indicating an overall increase of energy. S S( )

As an example to elucidate the physical meaning of the above equation, let’s consider an 
inductor made up of a section of a very long air-core solenoid of length l, radius r and n 
turns per unit length. Suppose at some instant the current is changing at a rate dI / dt > 0 . 
Using Ampere’s law, the magnetic field in the solenoid is 

∫ B s  d = Bl  = 0 ( )�
r 
⋅ r μ NI  

C 

or 

B 
r

= μ0nI k̂ (13.6.18) 

Thus, the rate of increase of the magnetic field is  

dB dI = μ0n (13.6.19)
dt dt 

According to Faraday’s law: 
r 

ε = ⋅d r dΦB�
C 
∫ E s  = −  

dt 
(13.6.20) 

changing magnetic flux results in an induced electric field., which is given by 

E (2π r ) = −μ0n ⎛⎜ 
dI ⎞

⎟π r2 

⎝ dt ⎠ 
or 

r
E = − μ0nr ⎛ dI ⎞ φ̂ (13.6.21)

2 ⎝⎜ dt ⎠⎟ 
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r 
The direction of E is clockwise, the same as the induced current, as shown in Figure 
13.6.4. 

Figure 13.6.4 Poynting vector for a solenoid with dI / dt > 0 

The corresponding Poynting vector can then be obtained as 

r r  
E B× 1 ⎡ μ0nr ⎛ dI ⎞ ˆ ⎤ ˆ μ0n rI ⎛ dI ⎞ ˆS 

r
=

μ0 

=
μ0 ⎣

⎢− 
2 ⎝⎜ dt ⎠⎟

φ 
⎦⎥
×(μ0nI k ) = −  

2

2 

⎝⎜ dt ⎠⎟
r (13.6.22) 

which points radially inward, i.e., along the −r̂ direction. The directions of the fields and 
the Poynting vector are shown in Figure 13.6.4. 

Since the magnetic energy stored in the inductor is 

⎛ B2 ⎞ 2 1 2 2 2U = (π r l  ) = μ π  n I r l  (13.6.23)B ⎜
⎝ 2μ0 

⎟
⎠ 2 0 

the rate of change of UB is 

P = = 0 n  Ir  l  ⎜ = I | |dUB μ π 2 2 ⎛ dI ⎞
⎟ ε (13.6.24)

dt ⎝ dt ⎠
where 

dΦB nl  ⎛ dB ⎞ 2 2 π r 2 ⎛ dI ⎞ (13.6.25)ε = −N 
dt 

= −( )
⎝⎜ dt ⎠⎟

π r = −μ0n l  
⎝⎜ dt ⎠⎟ 

is the induced emf. One may readily verify that this is the same as 

r r  2 

−� ⋅d = μ0n rI  ⎛
⎜ 

dI ⎞
⎟ ⋅ (2π rl  ) 0

2 2 ⎛
⎜ 

dI ⎞
⎟∫ S A  = μ π  n  Ir  l  (13.6.26)

2 ⎝ dt ⎠ ⎝ dt ⎠ 

Thus, we have 
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r rdUB �∫ ⋅d >0 (13.6.27)= − S A
dt 

The energy in the system is increased, as expected when dI / dt > 0 . On the other hand, if 
dI / dt < 0 , the energy of the system would decrease, with dUB / dt < 0 . 

13.7 Momentum and Radiation Pressure 

The electromagnetic wave transports not only energy but also momentum, and hence can 
exert a radiation pressure on a surface due to the absorption and reflection of the 
momentum. Maxwell showed that if the plane electromagnetic wave is completely 
absorbed by a surface, the momentum transferred is related to the energy absorbed by 

ΔU p (complete absorption) (13.7.1)Δ =
c 

On the other hand, if the electromagnetic wave is completely reflected by a surface such 
as a mirror, the result becomes 

2ΔU p      (complete reflection) (13.7.2)Δ =
c 

For the complete absorption case, the average radiation pressure (force per unit area) is 
given by 

F 1 dp 1 dUP = = =  (13.7.3)
A A dt Ac dt 

Since the rate of energy delivered to the surface is 

dU = S A  = IA  
dt 

we arrive at 

IP =      (complete absorption) (13.7.4)
c 

Similarly, if the radiation is completely reflected, the radiation pressure is twice as great 
as the case of complete absorption: 

2IP =     (complete reflection) (13.7.5)
c 
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13.8 Production of Electromagnetic Waves 

Electromagnetic waves are produced when electric charges are accelerated. In other 
words, a charge must radiate energy when it undergoes acceleration. Radiation cannot be 
produced by stationary charges or steady currents. Figure 13.8.1 depicts the electric field 
lines produced by an oscillating charge at some instant. 

Figure 13.8.1 Electric field lines of an oscillating point charge 

A common way of producing electromagnetic waves is to apply a sinusoidal voltage 
source to an antenna, causing the charges to accumulate near the tips of the antenna. The 
effect is to produce an oscillating electric dipole. The production of electric-dipole 
radiation is depicted in Figure 13.8.2.  

Figure 13.8.2 Electric fields produced by an electric-dipole antenna. 

At time t = 0 the ends of the rods are charged so that the upper rod has a maximum 
positive charge and the lower rod has an equal amount of negative charge. At this instant 
the electric field near the antenna points downward. The charges then begin to decrease. 
After one-fourth period, t T / 4= , the charges vanish momentarily and the electric field 
strength is zero. Subsequently, the polarities of the rods are reversed with negative 
charges continuing to accumulate on the upper rod and positive charges on the lower until 
t T / 2 ,= when the maximum is attained. At this moment, the electric field near the rod 
points upward. As the charges continue to oscillate between the rods, electric fields are 
produced and move away with speed of light. The motion of the charges also produces a 
current which in turn sets up a magnetic field encircling the rods. However, the behavior 
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of the fields near the antenna is expected to be very different from that far away from the 
antenna. 

Let us consider a half-wavelength antenna, in which the length of each rod is equal to one 
quarter of the wavelength of the emitted radiation. Since charges are driven to oscillate 
back and forth between the rods by the alternating voltage, the antenna may be 
approximated as an oscillating electric dipole. Figure 13.8.3 depicts the electric and the 
magnetic field lines at the instant the current is upward. Notice that the Poynting vectors 
at the positions shown are directed outward. 

Figure 13.8.3 Electric and magnetic field lines produced by an electric-dipole antenna. 

In general, the radiation pattern produced is very complex. However, at a distance which 
is much greater than the dimensions of the system and the wavelength of the radiation, 
the fields exhibit a very different behavior. In this “far region,” the radiation is caused by 
the continuous induction of a magnetic field due to a time-varying electric field and vice 
versa. Both fields oscillate in phase and vary in amplitude as 1/ r . 

The intensity of the variation can be shown to vary as sin2 θ / r2 , where θ is the angle 
measured from the axis of the antenna. The angular dependence of the intensity I ( )θ  is 
shown in Figure 13.8.4. From the figure, we see that the intensity is a maximum in a 
plane which passes through the midpoint of the antenna and is perpendicular to it. 

Figure 13.8.4 Angular dependence of the radiation intensity. 
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13.8.1 Electric Dipole Radiation 1 Animation 

Consider an electric dipole whose dipole moment varies in time according to 

p r( )t = p0 
⎣
⎡1+ 

10
1 cos  ⎜

⎛
⎝ 

2 
T 
π t 

⎟
⎞
⎠⎦
⎤ k̂ (13.8.1)⎢ ⎥ 

Figure 13.8.5 shows one frame of an animation of these fields.  Close to the dipole, the 
field line motion and thus the Poynting vector is first outward and then inward, 
corresponding to energy flow outward as the quasi-static dipolar electric field energy is 
being built up, and energy flow inward as the quasi-static dipole electric field energy is 
being destroyed. 

Figure 13.8.5 Radiation from an electric dipole whose dipole moment varies by 10% 
(link) 

Even though the energy flow direction changes sign in these regions, there is still a small 
time-averaged energy flow outward. This small energy flow outward represents the small 
amount of energy radiated away to infinity. Outside of the point at which the outer field 
lines detach from the dipole and move off to infinity, the velocity of the field lines, and 
thus the direction of the electromagnetic energy flow, is always outward. This is the 
region dominated by radiation fields, which consistently carry energy outward to infinity.  

13.8.2 Electric Dipole Radiation 2 Animation 

Figure 13.8.6 shows one frame of an animation of an electric dipole characterized by   

p r( )t = p0 cos  ⎜
⎛ 2π t 

⎟
⎞ k̂ (13.8.2)

⎝ T ⎠ 

The equation shows that the direction of the dipole moment varies between +k̂  and −k̂ . 
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Figure 13.8.6 Radiation from an electric dipole whose dipole moment completely 
reverses with time (link) 

13.8.3 Radiation From a Quarter-Wave Antenna Animation 

Figure 13.8.7(a) shows the radiation pattern at one instant of time from a quarter-wave 
antenna. Figure 13.8.7(b) shows this radiation pattern in a plane over the full period of 
the radiation.  A quarter-wave antenna produces radiation whose wavelength is twice the 
tip to tip length of the antenna.  This is evident in the animation of Figure 13.8.7(b). 

Figure 13.8.7 Radiation pattern from a quarter-wave antenna: (a) The azimuthal pattern 
at one instant of time (link), and (b) the radiation pattern in one plane over the full period 
(link) 

13.8.4 Plane Waves (link) 

We have seen that electromagnetic plane waves propagate in empty space at the speed of 
light. Below we demonstrate how one would create such waves in a particularly simple 
planar geometry. Although physically this is not particularly applicable to the real world, 
it is reasonably easy to treat, and we can see directly how electromagnetic plane waves 
are generated, why it takes work to make them, and how much energy they carry away 
with them.   
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To make an electromagnetic plane wave, we do much the same thing we do when we 
make waves on a string.  We grab the string somewhere and shake it, and thereby 
generate a wave on the string. We do work against the tension in the string when we 
shake it, and that work is carried off as an energy flux in the wave.  Electromagnetic 
waves are much the same proposition.  The electric field line serves as the “string.”  As 
we will see below, there is a tension associated with an electric field line, in that when we 
shake it (try to displace it from its initial position), there is a restoring force that resists 
the shake, and a wave propagates along the field line as a result of the shake.  To 
understand in detail what happens in this process will involve using most of the 
electromagnetism we have learned thus far, from Gauss's law to Ampere's law plus the 
reasonable assumption that electromagnetic information propagates at speed c in a 
vacuum. 

How do we shake an electric field line, and what do we grab on to?  What we do is shake 
the electric charges that the field lines are attached to.  After all, it is these charges that 
produce the electric field, and in a very real sense the electric field is "rooted" in the 
electric charges that produce them.  Knowing this, and assuming that in a vacuum, 
electromagnetic signals propagate at the speed of light, we can pretty much puzzle out 
how to make a plane electromagnetic wave by shaking charges.  Let's first figure out how 
to make a kink in an electric field line, and then we'll go on to make sinusoidal waves.   

Suppose we have an infinite sheet of charge located in the yz -plane, initially at rest, with 
surface charge density σ , as shown in Figure 13.8.8. 

Figure 13.8.8 Electric field due to an infinite sheet with charge density σ . 


From Gauss's law discussed in Chapter 4, we know that this surface charge will give rise 

r 

to a static electric field E0 : 

E 
r

=
⎧⎪
⎨
+(σ ε0 ) , î x 

(13.8.3)
2 > 0 

0 
⎪−(σ ε0 ) , î x2 < 0⎩ 

Now, at t = 0 , we grab the sheet of charge and start pulling it downward with constant 
velocity v r = −v ̂  . Let's examine how things will then appear at a later time t Tj = . In 
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particular, before the sheet starts moving, let's look at the field line that goes through 
y = 0 for t < 0 , as shown in Figure 13.8.9(a). 

Figure 13.8.9 Electric field lines (a) through y = 0 at t < 0 = (link), and (b) at t T

The “foot” of this electric field line, that is, where it is anchored, is rooted in the electric 
charge that generates it, and that “foot” must move downward with the sheet of charge, at 
the same speed as the charges move downward.  Thus the “foot” of our electric field line, 
which was initially at y = 0 at t = 0 , will have moved a distance y = −vT  down the y-
axis at time t T .= 

We have assumed that the information that this field line is being dragged downward will 
propagate outward from x = 0 at the speed of light c . Thus the portion of our field line 
located a distance x > cT  along the x-axis from the origin doesn't know the charges are 
moving, and thus has not yet begun to move downward.  Our field line therefore must 
appear at time t T as shown in Figure 13.8.9(b). Nothing has happened outside of = 
| |> cT x = 0 down the y-axis, and we x ; the foot of the field line at  is a distance y = −vT
have guessed about what the field line must look like for 0 |< x |< cT  by simply 
connecting the two positions on the field line that we know about at time T ( x = 0 and 
| |x = cT ) by a straight line. This is exactly the guess we would make if we were dealing 
with a string instead of an electric field.  This is a reasonable thing to do, and it turns out 
to be the right guess.   

rrr
What we have done by pulling down on the charged sheet is to generate a perturbation in 
the electric field, E1 in addition to the static field E0 . Thus, the total field E for 
0 |< x |< cT is 

rrr
E E= 0 + E1 (13.8.4) 

r

As shown in Figure 13.8.9(b), the field vector E must be parallel to the line connecting 
the foot of the field line and the position of the field line at | |x = cT . This implies   
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tan θ = 
E1 = 

vT = v (13.8.5)
E0 cT  c  

r r 
where E1 =| E1 | and E0 =| E0 | are the magnitudes of the fields, andθ is the angle with 
the x-axis. Using Eq. (13.8.5), the perturbation field can be written as 

r
E1 = ⎛⎜⎝ c

v E0 ⎟⎠
⎞ ĵ = ⎜

⎝

⎛ 
2 
v 
ε
σ 

0c ⎟⎠

⎞
ĵ (13.8.6) 

where we have used E0 =σ ε2 0 . We have generated an electric field perturbation, and 
r 

this expression tells us how large the perturbation field E1 is for a given speed of the 
sheet of charge, v . 

This explains why the electric field line has a tension associated with it, just as a string 
r 

does. The direction of E1 is such that the forces it exerts on the charges in the sheet 
resist the motion of the sheet. That is, there is an upward electric force on the sheet when 
we try to move it downward. For an infinitesimal area dA of the sheet containing charge 
dq =σ dA , the upward  “tension” associated with the electric field is 

dF 
r 

e = dq  E 
r

1 = (σdA  )
⎛
⎜ 

vσ ⎞
⎟ ĵ = 

⎛
⎜ 

vσ 2dA  ⎞
⎟ ĵ (13.8.7)

⎝ 2ε0c ⎠ ⎝ 2ε0c ⎠ 

Therefore, to overcome the tension, the external agent must apply an equal but opposite 
(downward) force 

⎛ v dA  σ ⎞
dF 
r 

ext = −dF 
r

e = −⎜ 
2 

⎟ ĵ (13.8.8)
⎝ 2ε0c ⎠ 

Since the amount of work done is dWext = F 
r 

ext ⋅d r s , the work done per unit time per unit 
area by the external agent is 

2 
r r 2 2 2d Wext dFext ds 

⎜
⎛ vσ ˆ ⎟

⎞
⋅  −  ˆ v σ (13.8.9)= ⋅ = − j ( )  v j = 

dAdt dA dt ⎝ 2ε0c ⎠ 2ε0c 

What else has happened in this process of moving the charged sheet down?  Well, once 
the charged sheet is in motion, we have created a sheet of current with surface current 
density (current per unit length) K 

r 
= −σv ̂j . From Ampere's law, we know that a 

r 
magnetic field has been created, in addition to E1 . The current sheet will produce a 
magnetic field (see Example 9.4)  
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r ⎪⎧+(μ σv 2)  k̂, x > 0
B1 = ⎨ 

0 

⎪−(μ σv 2)  k̂, x < 0 
(13.8.10) 

⎩ 0 

This magnetic field changes direction as we move from negative to positive values of x , 
(across the current sheet). The configuration of the field due to a downward current is 
shown in Figure 13.8.10 for | x |< cT . Again, the information that the charged sheet has 
started moving, producing a current sheet and associated magnetic field, can only 
propagate outward from x = 0  at the speed of light c . Therefore the magnetic field is still 

r r 
B 0  xzero, =  for | | > cT . Note that 

E1 = 
vσ / 2ε0c = 

1 = c (13.8.11)
B μ σv / 2  cμ ε  1 0 0 0 

Figure 13.8.10 Magnetic field at t T (link) = 

r r
The magnetic field B1 generated by the current sheet is perpendicular to E1  with a 
magnitude B1 1 /= E c  , as expected for a transverse electromagnetic wave.  

Now, let’s discuss the energy carried away by these perturbation fields.  The energy flux 
r 

associated with an electromagnetic field is given by the Poynting vector S . For x > 0 , 
the energy flowing to the right is 

1 1 ⎛ vσ ⎞ ⎛ μ σ v ⎞ ⎛ v σ ⎞
S 
r 
=

μ0 

E 
r 

1 ×B 
r

1 = μ0 
⎜
⎝ 2ε0c 

ĵ⎟
⎠
×⎜⎝ 

0

2 
k̂ ⎟⎠ 

= ⎜
⎝ 4

2 

ε0c 

2 

⎟
⎠ 

î (13.8.12) 

This is only half of the work we do per unit time per unit area to pull the sheet down, as 
given by Eq. (13.8.9). Since the fields on the left carry exactly the same amount of 

r 
energy flux to the left, (the magnetic field B1 changes direction across the plane x = 0 

r 
whereas the electric field E1 does not, so the Poynting flux also changes across x = 0 ). 
So the total energy flux carried off by the perturbation electric and magnetic fields we 
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have generated is exactly equal to the rate of work per unit area to pull the charged sheet 
down against the tension in the electric field. Thus we have generated perturbation 
electromagnetic fields that carry off energy at exactly the rate that it takes to create them. 

Where does the energy carried off by the electromagnetic wave come from? The external 
agent who originally “shook” the charge to produce the wave had to do work against the 
perturbation electric field the shaking produces, and that agent is the ultimate source of 
the energy carried by the wave. An exactly analogous situation exists when one asks 
where the energy carried by a wave on a string comes from.  The agent who originally 
shook the string to produce the wave had to do work to shake it against the restoring 
tension in the string, and that agent is the ultimate source of energy carried by a wave on 
a string. 

13.8.5 Sinusoidal Electromagnetic Wave 

How about generating a sinusoidal wave with angular frequency ω ? To do this, instead 
of pulling the charge sheet down at constant speed, we just shake it up and down with a 
velocity v r( )t = −v0 cos  ωt ̂j . The oscillating sheet of charge will generate fields which are 
given by: 

r cμ σ v ⎛ x ⎞ r μ σv ⎛ x ⎞E1 =	 0 0 cos ω⎜ t − ⎟ ĵ, B1 = 0 0 cosω⎜ t − ⎟ k̂ (13.8.13)
2 ⎝ c ⎠ 2 ⎝ c ⎠ 

for x > 0 and, for x < 0 , 

r cμ σ v x r μ σv xE1 =	 0 0 cos ω⎛
⎜ t + ⎞

⎟ ĵ, B1 = −  0 0 cosω⎛
⎜ t + ⎞

⎟ k̂ (13.8.14)
2 ⎝ c ⎠ 2 ⎝ c ⎠ 

In Eqs. (13.8.13) and (13.8.14) we have chosen the amplitudes of these terms to be the 
amplitudes of the kink generated above for constant speed of the sheet, with E1 / B1 = c , 
but now allowing for the fact that the speed is varying sinusoidally in time with 
frequency ω . But why have we put the (t x− / )  and (t x+ / ) in the arguments for the c c 
cosine function in Eqs. (13.8.13) and (13.8.14)? 

Consider first x > 0 . If we are sitting at some x > 0 at time t , and are measuring an 
electric field there, the field we are observing should not depend on what the current 
sheet is doing at that observation time t .  Information about what the current sheet is 
doing takes a time x / c to propagate out to the observer at x > 0 . Thus what the observer 
at x > 0 sees at time t depends on what the current sheet was doing at an earlier time, 
namely t x− / c . The electric field as a function of time should reflect that time delay due 
to the finite speed of propagation from the origin to some x > 0 , and this is the reason the 
(t x− /  ) appears in Eq. (13.8.13), and not t  itself.  For x < 0c , the argument is exactly the 
same, except if x < 0 , + c  is the expression for the earlier time, and not − c . Thist x  /	 t x  / 
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is exactly the time-delay effect one gets when one measures waves on a string.  If we are 
measuring wave amplitudes on a string some distance away from the agent who is 
shaking the string to generate the waves, what we measure at time t depends on what the 
agent was doing at an earlier time, allowing for the wave to propagate from the agent to 
the observer. 

If we note that cosω(t x  / ) = cos (ωt − kx  where k =ω− c ) c is the wave number, we see 
that Eqs. (13.8.13) and (13.8.14) are precisely the kinds of plane electromagnetic waves 

r
we have studied. Note that we can also easily arrange to get rid of our static field E0 by 
simply putting a stationary charged sheet with charge per unit area −σ at x = 0 . That 
charged sheet will cancel out the static field due to the positive sheet of charge, but will 
not affect the perturbation field we have calculated, since the negatively-charged sheet is 
not moving.  In reality, that is how electromagnetic waves are generated--with an overall 
neutral medium where charges of one sign (usually the electrons) are accelerated while 
an equal number of charges of the opposite sign essentially remain at rest.  Thus an 
observer only sees the wave fields, and not the static fields.  In the following, we will 

r
assume that we have set E0  to zero in this way.   

Figure 13.9.4 Electric field generated by the oscillation of a current sheet (link) 

The electric field generated by the oscillation of the current sheet is shown in Figure 
13.8.11, for the instant when the sheet is moving down and the perturbation electric field 
is up. The magnetic fields, which point into or out of the page, are also shown.   

What we have accomplished in the construction here, which really only assumes that the 
feet of the electric field lines move with the charges, and that information propagates at c 
is to show we can generate such a wave by shaking a plane of charge sinusoidally. The 
wave we generate has electric and magnetic fields perpendicular to one another, and 
transverse to the direction of propagation, with the ratio of the electric field magnitude to 
the magnetic field magnitude equal to the speed of light.  Moreover, we see directly 

r r r  
S E  carried off by the wave comes from.  The agent who 

shakes the charges, and thereby generates the electromagnetic wave puts the energy in.  If 
we go to more complicated geometries, these statements become much more complicated 
in detail, but the overall picture remains as we have presented it.   

where the energy flux = ×B / μ0 

13-32 

http:13.8.11


Let us rewrite slightly the expressions given in Eqs. (13.8.13) and (13.8.14) for the fields 
generated by our oscillating charged sheet, in terms of the current per unit length in the 

r r 
sheet, K( )t =σv t  ( ) ĵ . Since v r( )t = −v0 cos  ωt ̂j , it follows that K( )t = −σ v0 cos  ωt ̂j . Thus, 

r 
μ x tE 

r 
1 x t  c 0 

r 
/  ),  

r
1 x t  = î × E1( ,  )  (13.8.15)( , )  = −  K(t − x c B ( , )  

2 c 

for x > 0 , and 

r 
x tr 

( , )  = − cμ0 K 
r 

(t + x c B 
r

( , )  ˆ E1( , )  E1 x t  / ),  1 x t  = −  ×i (13.8.16)
2 c 

r 
for x < 0 . Note that B1( , )x t reverses direction across the current sheet, with a jump of 

r
K( )t  at the sheet, as it must from Ampere's law.  Any oscillating sheet of current mustμ0 

generate the plane electromagnetic waves described by these equations, just as any 
stationary electric charge must generate a Coulomb electric field.   

Note:  To avoid possible future confusion, we point out that in a more advanced 
electromagnetism course, you will study the radiation fields generated by a single 
oscillating charge, and find that they are proportional to the acceleration of the charge. 
This is very different from the case here, where the radiation fields of our oscillating 
sheet of charge are proportional to the velocity of the charges. However, there is no 
contradiction, because when you add up the radiation fields due to all the single charges 
making up our sheet, you recover the same result we give in Eqs. (13.8.15) and (13.8.16) 
(see Chapter 30, Section 7, of Feynman, Leighton, and Sands, The Feynman Lectures on 
Physics, Vol 1, Addison-Wesley, 1963).    

13.9 Summary 

• The Ampere-Maxwell law reads 

�∫ B 
r 
⋅d r s = μ I + μ ε  

dΦE = μ (I + I )0 0 0 0 ddt 

where 

Id = ε0 
dΦE 

dt 

is called the displacement current. The equation describes how changing electric 
flux can induce a magnetic field. 
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• Gauss’s law for magnetism is  

r r 
Φ =  ⋅d = 0B �∫∫ B A  

S 

The law states that the magnetic flux through a closed surface must be zero, and 
implies the absence of magnetic monopoles. 

•	 Electromagnetic phenomena are described by the Maxwell’s equations: 

r	 r Q r r dΦB�∫∫ E A⋅ d =	 �∫ E ⋅ d s = −  
ε	 dtS 0 

r	 r r 
⋅ d = 0	 ⋅ d r s = μ I + μ ε  

dΦE�∫∫ B A 	 �∫ B 0 0 0 dtS 

•	 In free space, the electric and magnetic components of the electromagnetic wave 
obey a wave equation: 

⎛ ∂2 2 ⎧ y ( , )  ∂ ⎞ E x t  ⎫
− μ ε ⎨ ⎬ = 0⎜	 2 0 0 2 ⎟ 

⎝ ∂x ∂ ⎠⎩ z ( , )  ⎭t B x t  

•	 The magnitudes and the amplitudes of the electric and magnetic fields in an 
electromagnetic wave are related by 

E E0 = ω = c = 
1 ≈ 3.00 108  m/s =	 ×

B B k μ ε0 0 0  

•	 A standing electromagnetic wave does not propagate, but instead the electric 
and magnetic fields execute simple harmonic motion perpendicular to the would-
be direction of propagation. An example of a standing wave is  

y (	 , ) = 2E0 sin kx  sin ωt, Bz ( , ) = 2B0 cos E x t 	 x t  kx  cos ωt 

•	 The energy flow rate of an electromagnetic wave through a closed surface is 
given by 

r	 rdU = −  ⋅d�∫∫ S A
dt 

where 

rr 1 r 
S = E×B

μ0 
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r
 is the Poynting vector, and S points in the direction the wave propagates. 

•	 The intensity of an electromagnetic wave is related to the average energy density 
by 

I = S = c u 

•	 The momentum transferred is related to the energy absorbed by

⎧ΔU 
⎪⎪

 (complete absorption) 
Δ = cp	 ⎨ 

⎪2 ΔU (complete reflection)⎪	 c⎩ 

•	 The average radiation pressure on a surface by a normally incident 
electromagnetic wave is

⎧ I 
⎪⎪c 

(complete absorption) 
P = ⎨ 

⎪2I (complete reflection)⎪⎩ c 

13.10 Appendix: Reflection of Electromagnetic Waves at Conducting Surfaces 

How does a very good conductor reflect an electromagnetic wave falling on it? In words, 
what happens is the following. The time-varying electric field of the incoming wave 
drives an oscillating current on the surface of the conductor, following Ohm's law. That 
oscillating current sheet, of necessity, must generate waves propagating in both directions 
from the sheet. One of these waves is the reflected wave. The other wave cancels out the 
incoming wave inside the conductor. Let us make this qualitative description quantitative. 

Figure 13.10.1 Reflection of electromagnetic waves at conducting surface 
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Suppose we have an infinite plane wave propagating in the +x-direction, with 

E 
r 

0 = E0 cos(ωt − kx) ĵ, B 
r

0 = B0 cos(ωt − kx)k̂ (13.10.1) 

as shown in the top portion of Figure 13.10.1. We put at the origin ( x = 0 ) a conducting 
sheet with width D , which is much smaller than the wavelength of the incoming wave.   

This conducting sheet will reflect our incoming wave.  How? The electric field of the 
r r 

incoming wave will cause a current J E= ρ to flow in the sheet, where ρ  is the 
resistivity (not to be confused with charge per unit volume), and is equal to the reciprocal 
of conductivity σ (not to be confused with charge per unit area). Moreover, the direction 

r 
of J will be in the same direction as the electric field of the incoming wave, as shown in 
the sketch. Thus our incoming wave sets up an oscillating sheet of current with current 

r r 
per unit length = D .K J   As in our discussion of the generation of plane electromagnetic 
waves above, this current sheet will also generate electromagnetic waves, moving both to 
the right and to the left (see lower portion of Figure 13.10.1) away from the oscillating 
sheet of charge. Using Eq. (13.8.15) for x > 0  the wave generated by the current will be  

r μE ( , )  x t = − c JD  0 cos  (ωt − kx  ) ĵ (13.10.2)1 2 

r 
J J 0 , we will have a similar expression, except that the argument where =| | . For x < 

r
will be (ωt kx+ ) (see Figure 13.10.1). Note the sign of this electric field E1  at x = 0 ; it 

is down  ( − ĵ ) when the sheet of current is up (and E 
r

0 is up, + ĵ ), and vice-versa, just as 
r 

we saw before. Thus, for x > 0 , the generated electric field E1 will always be  opposite the 
direction of the electric field of the incoming wave, and it will tend to cancel out the 
incoming wave for x > 0 . For a very good conductor, we have (see next section) 

r
K = | |K = JD  = 

2E0 (13.10.3)
cμ0 

so that for x > 0 we will have 

r
E1 x t 0

ˆ( , )  = −E cos  (ωt − kx  ) j (13.10.4) 

That is, for a very good conductor, the electric field of the wave generated by the current 
will exactly cancel the electric field of the incoming wave for x > 0 !  And that's what a 
very good conductor does. It supports exactly the amount of current per unit length 
K = 2 /E0 cμ0 needed to cancel out the incoming wave for x > 0 . For x < 0 , this same 
current generates a “reflected” wave propagating back in the direction from which the 
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original incoming wave came, with the same amplitude as the original incoming wave. 
This is how a very good conductor totally reflects electromagnetic waves. Below we 
shall show that K will in fact approach the value needed to accomplish this in the limit 
the resistivity ρ  approaches zero. 

In the process of reflection, there is a force per unit area exerted on the conductor. This is 
just the r ×

r 
force due to the current J 

r 
v B  flowing in the presence of the magnetic field of

r r 
the incoming wave, or a force per unit volume of × 0 . If we calculate the total forceJ B  
r 

dF acting on a cylindrical volume with area dA  and length D of the conductor, we find 
that it is in the +x - direction, with magnitude 

r r 2E B dAdF = D | × 0 | dA = 0 
0 0J B  DJB dA = (13.10.5)
cμ0 

so that the force per unit area, 

dF E B  = 
2 0 0  = 2S (13.10.6)

dA cμ0 c 

or radiation pressure, is just twice the Poynting flux divided by the speed of light c . 

We shall show that a perfect conductor will perfectly reflect an incident wave. To 
approach the limit of a perfect conductor, we first consider the finite resistivity case, and 
then let the resistivity go to zero. 

For simplicity, we assume that the sheet is thin compared to a wavelength, so that the 
entire sheet sees essentially the same electric field. This implies that the current density
r 
J will be uniform across the thickness of the sheet, and outside of the sheet we will see 

r r 
fields appropriate to an equivalent surface current K( )t = DJ( )t . This current sheet will 
generate additional electromagnetic waves, moving both to the right and to the left, away

r 
from the oscillating sheet of charge. The total electric field, ( ,  )  , will be the sum ofE x t 
the incident electric field and the electric field generated by the current sheet. Using Eqs. 
(13.8.15) and (13.8.16) above, we obtain the following expressions for the total electric 
field: 

r r⎧ cμ0 x c 

x c 

), x > 0

E 
r 

x t  = E 
r 

0 ( , ) + 
r 

1 x t  = 
⎪⎪
⎨ 

E0 (x t, ) − 
2 

K(t −

( , )  x t  E ( , )  (13.10.7)

r r⎪E (x t, ) − 
cμ0 K(t + ), x < 0⎪ 0 2⎩ 

r r 
We also have a relation between the current density J and E from the microscopic form

rr r
of Ohm's law: J( )t = E(0, )t ρ , where E(0, t is the total electric field at the position of 
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the conducting sheet. Note that it is appropriate to use the total electric field in Ohm's 
law -- the currents arise from the total electric field, irrespective of the origin of that field.  
Thus, we have 

r 

K 
r 

( )t = D J 
r
( )t = 

D E(0, ) t (13.10.8)
ρ 

At x = 0 , either expression in Eq. (13.10.7) gives 

E 
r 

(0, )  t = E 
r 

0 (0, )  t + E 
r 

1(0, )  t = E 
r 

0 (0, )  t − 
cμ0 K 

r 
( )  t 

2 
r

= E (0, ) t − 
Dcμ0E 

r 
(0, ) t 

(13.10.9) 

0 2ρ 

r 
where we have used Eq. (13.10.9) for the last step. Solving for E(0, ) t , we obtain 

r 

E 
r

(0, ) t = 
E0 (0, ) t (13.10.10)

1+ Dcμ0 2ρ 

Using the expression above, the surface current density in Eq. (13.10.8) can be rewritten 
as 

r 

K 
r 

( )t = D J 
r
( )t = 

D E0 (0, ) t (13.10.11)
ρ + Dcμ0 2 

r r 
In the limit where ρ � 0 (no resistance, a perfect conductor), E(0, )t = 0 , as can be seen 
from Eq. (13.10.8), and the surface current becomes 

r 
r 2 (0,  )  E t 2E 2BK( )t = 

c 
0 

μ0 

= 
cμ0

0 cos  ωt ĵ =
μ0

0 cos  ωt ĵ (13.10.12) 

In this same limit, the total electric fields can be written as 

r
x t  

⎧(E − E )cos ωt − kx  ) = , x > 0 
(13.10.13)E( , )  = 

⎪
⎨ 

0 0 ( ĵ 0  
r 

⎩E0 ωt − kx  ) − ωt + kx  )] ̂j = 2 0 
ˆ⎪ [cos( cos( E sin ωt sin kx  j, x < 0 

Similarly, the total magnetic fields in this limit are given by 
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r 

B 
r 

( , )  = B 
r 

0 (  , )  x t  + B 
r 

1( , )  = B0 cos  (ωt − kx)k̂ + ̂i ×
⎛
⎜ 

E1( , )  x t ⎞ 
x t  x t  ⎟ 

⎝ c ⎠ (13.10.14) 

= B	 cos (ωt − kx)k̂ − B cos (ωt − kx)k̂ = 0 
r

0	 0 

for 	x > 0 , and 

B 
r

x t = 0[cos( t k ) + cos( t + kx)] k̂ = 2 0 
ˆ( , ) B ω − x ω B cos ωt cos kxk (13.10.15) 

for x < 0 . Thus, from Eqs. (13.10.13) - (13.10.15) we see that we get no electromagnetic 
wave for x > 0 , and standing electromagnetic waves for x < 0 . Note that at x = 0 , the 
total electric field vanishes. The current per unit length at x = 0 , 

K 
r

( )t	 = 
2B0 cos  ωt ĵ (13.10.16)
μ0 

is just the current per length we need to bring the magnetic field down from its value at 
x < 0 to zero for x > 0 . 

You may be perturbed by the fact that in the limit of a perfect conductor, the electric field 
vanishes at x = 0 , since it is the electric field at x = 0  that is driving the current there!  In 
the limit of very small resistance, the electric field required to drive any finite current is 
very small.  In the limit where ρ = 0 , the electric field is zero, but as we approach that 

r	 r 
limit, we can still have a perfectly finite and well determined value of J E= ρ , as we 
found by taking this limit in Eqs. (13.10.8) and (13.10.12) above.   

13.11 Problem-Solving Strategy: Traveling Electromagnetic Waves 

This chapter explores various properties of the electromagnetic waves. The electric and 
the magnetic fields of the wave obey the wave equation. Once the functional form of 
either one of the fields is given, the other can be determined from Maxwell’s equations. 
As an example, let’s consider a sinusoidal electromagnetic wave with 

E 
r 

( , )  = E0 sin(  kz −ωt)ˆz t 	 i 

The equation above contains the complete information about the electromagnetic wave: 

1.	 Direction of wave propagation: The argument of the sine form in the electric field 
can be rewritten as (kz −ωt) = k z − v )( t , which indicates that the wave is 
propagating in the +z-direction. 

2 /  k .2.	 Wavelength: The wavelength λ is related to the wave number k  by λ = π 
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3. Frequency: The frequency of the wave, f , is related to the angular frequency ω by 
f = / 2ω π . 

4.	 Speed of propagation: The speed of the wave is given by 

2π ω  ω  v = λ f = ⋅ = 
k 2π k 

In vacuum, the speed of the electromagnetic wave is equal to the speed of light, c . 

r r	 r 
5.	 Magnetic field B : The magnetic field B is perpendicular to both E which points in 

the +x-direction, and +k̂ , the unit vector along the +z-axis, which is the direction of 
propagation, as we have found. In addition, since the wave propagates in the same 

r r	 r 
direction as the cross product × , we conclude that BE B  must point in the +y-
direction (since ˆ ˆi j k̂ ).× =  

r	 r 
Since B is always in phase with E , the two fields have the same functional form. 
Thus, we may write the magnetic field as  

r 
z t 	 t)ˆB( , )  = B0 sin(  kz  −ω j 

where B0 is the amplitude. Using Maxwell’s equations one may show that 
B0 = 0 ( /ω) = E0 / cE k   in vacuum.  

6.	 The Poytning vector: Using Eq. (13.6.5), the Poynting vector can be obtained as 

2r 1 r r  1	 E B  sin ( kz  −ωt)⎡ ˆ⎤ ⎡  ˆ⎤ 0 0  ˆS = E B  × = E0 sin(kz  −ωt) i × B0 sin( kz  −ωt)j =	 k
μ0 μ0 

⎣ 	⎦ ⎣  ⎦ μ0 

7.	 Intensity: The intensity of the wave is equal to the average of S : 

E B  E B0 0  E0
2 cB  0

2 
2= 0 0I = S sin ( kz  −ωt) = = = 

2μ 2cμ 2μμ0	 0 0 0 

8.	 Radiation pressure: If the electromagnetic wave is normally incident on a surface 
and the radiation is completely reflected, the radiation pressure is 

2I E B  E2 B2 

P = = 0 0  = 0 = 0 

c cμ0 c2μ μ  0 0 
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13.12 Solved Problems 

13.12.1 Plane Electromagnetic Wave 

Suppose the electric field of a plane electromagnetic wave is given by 

E 
r

( , )  = E cos  (kz  −ωt ) iz t  0 
ˆ (13.12.1) 

Find the following quantities: 

(a) The direction of wave propagation. 

r 
(b) The corresponding magnetic field B . 

Solutions: 

(a) By writing the argument of the cosine function as kz −ωt = ( − ct ) where ω = ckk z , 
we see that the wave is traveling in the + z direction. 

(b) The direction of propagation of the electromagnetic waves coincides with the 
r r r r 

direction of the Poynting vector which is given by = ×B / μ0S E  . In addition, E and 

B 
r 

are perpendicular to each other. Therefore, if E 
r
= E( , )z t  ̂i and S 

r 
= Sk̂ , then 

B 
r 

= B( , )z t  ̂j . That is, B 
r 

points in the +y-direction. Since E 
r 

and B 
r 

are in phase with each 
other, one may write 

B 
r

( , )  z t  = B0 cos(  kz  −ωt)̂j (13.12.2) 

r 
To find the magnitude of B , we make use of Faraday’s law: 

r r dΦ 
� ⋅d 

dt
B (13.12.3)∫ E s  = −  

which implies 
∂Ex = −

∂By (13.12.4)
∂z ∂t 

From the above equations, we obtain 

0 0sin( ) sin( )E k kz t B kz tω ω ω−  −  = −  −  (13.12.5) 
or 

0 

0 

E 
B k 

ω = c=  (13.12.6) 
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Thus, the magnetic field is given by 

B 
r

( , )  = (E0 /  ) cos(  kz −ωt) ˆ (13.12.7)z t  c  j 

13.12.2 One-Dimensional Wave Equation 

Verify that, for ω = kc , 

( , )  = E cos  (kx −ωt )E x t  0 

B x t  0( , )  = B cos  (kx −ωt ) 
(13.12.8) 

satisfy the one-dimensional wave equation: 

⎛ ∂2 1 ∂2 ⎞⎧E x t  ( , )  ⎫ 
⎜ ∂x2 − 2 ∂t 2 ⎟⎨ ( , )  ⎬

= 0 (13.12.9)
⎝ c ⎠⎩B x t  ⎭ 

Solution: 

Differentiating E E= 0 cos (kx −ωt )  with respect to x gives 

∂E ∂2 E 2= −kE0 sin (kx −ωt ), 2 = −  k E 0  cos (kx −ωt ) (13.12.10)
∂x ∂x 

Similarly, differentiating E  with respect to t yields 

∂E =ωE0 sin (kx −ωt ), ∂2 E 
2 = −  ω2 E0 cos (kx −ωt ) (13.12.11)

∂t ∂t 

Thus, 
∂
∂ 

2 

x
E 
2 − 

c 
1

2 

∂
∂ 

2 

t
E 
2 = 

⎛
⎜
⎝ 
−k 2 + ω 

c2

2 ⎞
⎟
⎠

E0 cos (kx −ωt ) = 0 (13.12.12) 

where we have made used of the relation ω = kc . One may follow a similar procedure to 
verify the magnetic field. 
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13.12.3 Poynting Vector of a Charging Capacitor 

A parallel-plate capacitor with circular plates of radius R and separated by a distance h is 
charged through a straight wire carrying current I, as shown in the Figure 13.12.1: 

Figure 13.12.1 Parallel plate capacitor 

r
(a) Show that as the capacitor is being charged, the Poynting vector S  points radially 
inward toward the center of the capacitor.  

r 
(b) By integrating S over the cylindrical boundary, show that the rate at which energy 
enters the capacitor is equal to the rate at which electrostatic energy is being stored in the 
electric field. 

Solutions: 

(a) Let the axis of the circular plates be the z-axis, with current flowing in the +z-
direction. Suppose at some instant the amount of charge accumulated on the positive 
plate is +Q. The electric field is  

E 
r
= σ k̂ = 

Q 
2 k̂ (13.12.13)

ε0 π R ε0 

According to the Ampere-Maxwell’s equation, a magnetic field is induced by changing 
electric flux: 

r r d r r 
B s⋅ d = μ I + μ ε  E ⋅dA�∫ 0 enc  0 0  dt ∫∫  

S 

Figure 13.12.2 
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From the cylindrical symmetry of the system, we see that the magnetic field will be 
r

circular, centered on the z-axis, i.e., B = Bφ̂  (see Figure 13.12.2.) 

Consider a circular path of radius r < R between the plates. Using the above formula, we 
obtain 

( )  0 0  
d ⎛

⎜
Q 

2
2 ⎞
⎟ 

μ0r 
2

2 dQ  B 2π r = +0 μ ε π r = (13.12.14)
dt ⎝ R 0 ⎠ dtπ ε  R 

or 

B
r

= μ0r 
2 

dQ φ̂ (13.12.15)
2π R dt 

r 
The Poynting S vector can then be written as 

r r r1 × =  
1 ⎛ Q k̂ ⎞×⎛ μ0r dQ  ˆ ⎞S = E B  ⎜ 2 ⎟ ⎜ 2 φ ⎟μ  μ π ε  R 2π R  dt  0 0 ⎝ 0 ⎠ ⎝ ⎠ 

(13.12.16)
⎛ Qr ⎞⎛ dQ ⎞ ˆ= −⎜ 2 R4 ⎟

⎝⎜ ⎟r 
⎝ 2π ε  0 ⎠ dt  ⎠ 

r
Note that for dQ dt / > 0 S  points in the −r̂ direction, or radially inward toward the 
center of the capacitor. 

(b) The energy per unit volume carried by the electric field is uE = ε0 E
2 / 2  . The total 

energy stored in the electric field then becomes 

2 2 
0 2 2 2U = u V  = ε E (  )  π R h  = 

1 ε
⎛ Q ⎞

π R h  = Q h  (13.12.17)E E 2 0 ⎜ R2 ⎟ π ε22 ⎝ π ε0 ⎠ 2 R 0 

Differentiating the above expression with respect to t, we obtain the rate at which this 
energy is being stored: 

2dUE = 
d 

⎜
⎛ Q h  

2 ⎟
⎞ 
= Qh  

2 ⎜
⎛ dQ  

⎟
⎞ (13.12.18)

2π ε π ε  ⎠dt dt ⎝ R 0 ⎠ R 0 ⎝ dt 

On the other hand, the rate at which energy flows into the capacitor through the cylinder 
r

at r = R can be obtained by integrating S  over the surface area: 
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�
⎛ Qr dQ ⎞(2π Rh  ) Qh ⎛ dQ ⎞ 

2 4 22π ε R dt ε π  R dt 0 ⎝ ⎠ 

r
r

S A⋅d = SA  R (13.12.19)
=
⎜
 ⎟
 =
 ⎜
 ⎟


⎝
 ⎠
o 
∫

which is equal to the rate at which energy stored in the electric field is changing. 

13.12.4 Poynting Vector of a Conductor  

A cylindrical conductor of radius a and conductivity σ  carries a steady current I which is 
distributed uniformly over its cross-section, as shown in Figure 13.12.3. 

Figure 13.12.3 

r

(a) Compute the electric field E inside the conductor. 

r

(b) Compute the magnetic field B just outside the conductor. 

r

(c) Compute the Poynting vector S 
does S point? 

r
at the surface of the conductor. In which direction 

r

(d) By integrating S over the surface area of the conductor, show that the rate at which 
electromagnetic energy enters the surface of the conductor is equal to the rate at which 
energy is dissipated. 

Solutions: 

(a) Let the direction of the current be along the z-axis. The electric field is given by 

r

r

E = 


J I = k̂ 
σ σπa2 (13.12.20) 


where R is the resistance and l is the length of the conductor. 

(b) The magnetic field can be computed using Ampere’s law: 
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�∫ B 
r 
⋅ d s r = μ I (13.12.21)0 enc  

Choosing the Amperian loop to be a circle of radius r , we have B(2π r) = μ0 I , or 

r μ IB = 0 φ̂ (13.12.22)
2π r 

(c) The Poynting vector on the surface of the wire (r = a) is 

r r  
× 1 ⎛ I ⎞ μ0 I ⎞S 

r
= 

E B  = ⎜ 2 k̂ ⎟×
⎛
⎜ φ̂ ⎟ =  −

⎛
⎜ 

I 
2

2 

3 

⎞
⎟ r̂ (13.12.23)

μ0 μ0 ⎝σπ  a ⎠ ⎝ 2π a ⎠ ⎝ 2π σ  a ⎠ 

r
Notice that S  points radially inward toward the center of the conductor.  

(d) The rate at which electromagnetic energy flows into the conductor is given by 

2 2dU r r  ⎛ I ⎞ I l P = = �∫∫ S A⋅ d = ⎜ 2 3  ⎟ 2π al  = 2 (13.12.24)
dt S ⎝ 2σπ a ⎠ σπ a 

However, since the conductivity σ is related to the resistance R by 

σ = 
1 = 

l = l 
2 (13.12.25)

ρ AR π a R 
The above expression becomes 

2P I R (13.12.26)=

which is equal to the rate of energy dissipation in a resistor with resistance R. 

13.13 Conceptual Questions 

1. In the Ampere-Maxwell’s equation, is it possible that both a conduction current and a 
displacement are non-vanishing? 

2. What causes electromagnetic radiation? 

3. When you touch the indoor antenna on a TV, the reception usually improves. Why? 
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4. Explain why the reception for cellular phones often becomes poor when used inside a 
steel-framed building. 

5. Compare sound waves with electromagnetic waves. 

6. Can parallel electric and magnetic fields make up an electromagnetic wave in vacuum? 

7. What happens to the intensity of an electromagnetic wave if the amplitude of the 
electric field is halved? Doubled? 

13.14 Additional Problems 

13.14.1 Solar Sailing 

It has been proposed that a spaceship might be propelled in the solar system by radiation 
pressure, using a large sail made of foil.  How large must the sail be if the radiation force 
is to be equal in magnitude to the Sun's gravitational attraction?  Assume that the mass of 
the ship and sail is 1650 kg, that the sail is perfectly reflecting, and that the sail is 
oriented at right angles to the Sun’s rays. Does your answer depend on where in the solar 
system the spaceship is located?   

13.14.2 Reflections of True Love 

(a) A light bulb puts out 100 W of electromagnetic radiation. What is the time-average 
intensity of radiation from this light bulb at a distance of one meter from the bulb?  What 
are the maximum values of electric and magnetic fields, E0 and B0 , at this same distance 
from the bulb?  Assume a plane wave.   

(b) The face of your true love is one meter from this 100 W bulb. What maximum surface 
current must flow on your true love's face in order to reflect the light from the bulb into 
your adoring eyes?  Assume that your true love's face is (what else?) perfect--perfectly 
smooth and perfectly reflecting--and that the incident light and reflected light are normal 
to the surface. 

13.14.3 Coaxial Cable and Power Flow 

A coaxial cable consists of two concentric long hollow cylinders of zero resistance; the 
inner has radius a , the outer has radius b , and the length of both is l , with l >> b . The 
cable transmits DC power from a battery to a load.  The battery provides an electromotive 
force ε between the two conductors at one end of the cable, and the load is a 
resistance R connected between the two conductors at the other end of the cable. A 
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current I flows down the inner conductor and back up the outer one. The battery charges 
the inner conductor to a charge −Q and the outer conductor to a charge +Q . 

Figure 13.14.1 

r 
E(a) Find the direction and magnitude of the electric field everywhere. 

r

(b) Find the direction and magnitude of the magnetic field B everywhere. 

r

(c) Calculate the Poynting vector S  in the cable. 

r

(d) By integrating S over appropriate surface, find the power that flows into the coaxial 
cable. 

(e) How does your result in (d) compare to the power dissipated in the resistor? 

13.14.4 Superposition of Electromagnetic Waves 

Electromagnetic wave are emitted from two different sources with  

r
 r

−ω
t) ,    ĵ )
̂jω φ
E1 x t  = E10  kx E x t  = E k( , )
 cos( ( , )
 cos( x −
 t +2  20  

(a) Find the Poynting vector associated with the resultant electromagnetic wave. 

(b) Find the intensity of the resultant electromagnetic wave 

(c) Repeat the calculations above if the direction of propagation of the second 
electromagnetic wave is reversed so that  

r
 r

−ω
t) ,    ĵ )
̂jω φ
E1 x t  = E10  kx E x t  = E k( , )
 cos( ( , )
 cos( x +
 t +2  20  

13.14.5 Sinusoidal Electromagnetic Wave 

The electric field of an electromagnetic wave is given by 
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r 
E( , )  = E0 cos(  kz  −ωt) (  i + )z t  ˆ ĵ 

(a) What is the maximum amplitude of the electric field? 

r 
(b) Compute the corresponding magnetic field B . 

r 
(c) Find the Ponyting vector S . 

(d) What is the radiation pressure if the wave is incident normally on a surface and is 
perfectly reflected? 

13.14.6 Radiation Pressure of Electromagnetic Wave 

A plane electromagnetic wave is described by  

E 
r 
= E0 sin(kx  −ωt) , ĵ B 

r 
= B0 sin( kx  −ωt)k̂ 

where E0 = cB  0 . 

(a) Show that for any point in this wave, the density of the energy stored in the electric 
field equals the density of the energy stored in the magnetic field.  What is the time-
averaged total (electric plus magnetic) energy density in this wave, in terms of E0 ? In 
terms of B0 ? 

(b) This wave falls on and is totally absorbed by an object. Assuming total absorption, 
show that the radiation pressure on the object is just given by the time-averaged total 
energy density in the wave.  Note that the dimensions of energy density are the same as 
the dimensions of pressure.   

(c) Sunlight strikes the Earth, just outside its atmosphere, with an average intensity of 
1350 W/m2. What is the time averaged total energy density of this sunlight?  An object 
in orbit about the Earth totally absorbs sunlight.  What radiation pressure does it feel? 

13.14.7 Energy of Electromagnetic Waves 

(a) If the electric field of an electromagnetic wave has an rms (root-mean-square) 
strength of 3.0×10−2  V/m , how much energy is transported across a 1.00-cm2 area in one 
hour? 

(b) The intensity of the solar radiation incident on the upper atmosphere of the Earth is 
approximately 1350 W/m2. Using this information, estimate the energy contained in a 
1.00-m3 volume near the Earth’s surface due to radiation from the Sun.  
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13.14.8 Wave Equation 

Consider a plane electromagnetic wave with the electric and magnetic fields given by 

r r 
E( , )  = Ez ( , )  k̂, B( , )  x t  = By x t  ̂x t  x t  ( , )  j 

Applying arguments similar to that presented in 13.4, show that the fields satisfy the 
following relationships: 

∂Ez =
∂By , 

∂By = μ ε  
∂Ez 

∂x ∂t ∂x 0 0  ∂t 

13.14.9 Electromagnetic Plane Wave 

An electromagnetic plane wave is propagating in vacuum has a magnetic field given by 

⎧ < <r 
0 (ax + bt)ˆ f ( )  = ⎨ 

1 0  u 1
B = B f j u 

⎩0 else 

The wave encounters an infinite, dielectric sheet at x = 0 of such a thickness that half of 
the energy of the wave is reflected and the other half is transmitted and emerges on the 
far side of the sheet. The +k̂  direction is out of the paper. 

(a) What condition between a and b must be met in order for this wave to satisfy 
Maxwell’s equations? 

r 
(b) What is the magnitude and direction of the E field of the incoming wave? 

(c) What is the magnitude and direction of the energy flux (power per unit area) carried 
by the incoming wave, in terms of B0 and universal quantities? 

(d) What is the pressure (force per unit area) that this wave exerts on the sheet while it is 
impinging on it? 

13.14.10 Sinusoidal Electromagnetic Wave 

An electromagnetic plane wave has an electric field given by 

r 
E = (300V/m)cos ⎛⎜ 

2π x − 2π ×106 t ⎞⎟ k̂ 
⎝ 3 ⎠ 
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where x and t are in SI units and k̂ is the unit vector in the +z-direction.  The wave is 
propagating through ferrite, a ferromagnetic insulator, which has a relative magnetic 
permeability κm = 1000 and dielectric constant κ = 10 . 

(a) What direction does this wave travel? 

(b) What is the wavelength of the wave (in meters)? 

(c) What is the frequency of the wave (in Hz)? 

(d) What is the speed of the wave (in m/s)? 

(e) Write an expression for the associated magnetic field required by Maxwell’s 
r 

equations. Indicate the vector direction of B with a unit vector and a + or −, and you 
should give a numerical value for the amplitude in units of tesla. 

(g) The wave emerges from the medium through which it has been propagating and 
continues in vacuum.  What is the new wavelength of the wave (in meters)? 
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