
Poynting Vector and Energy Flow in a Capacitor 
Challenge Problem Solutions 

 
Problem 1: 
 
A parallel-plate capacitor consists of two circular plates, each with radius , separated 
by a distance . A steady current 

R
d I  is  flowing towards the lower plate and away from 

the upper plate, charging the plates.  
 

 
 

a) What is the direction and magnitude of the electric field E
G

 between the plates? 
You may neglect any fringing fields due to edge effects.  

 
b) What is the total energy stored in the electric field of the capacitor? 

 
c) What is the rate of change of the energy stored in the electric field? 

 
d) What is the magnitude of the magnetic field B

G
 at point  located between the 

plates at radius  (see figure above).  As seen from above, is the direction of 
the magnetic field  clockwise or counterclockwise. Explain your answer. 

P
r R<

 
e) Make a sketch of the electric and magnetic field inside the capacitor. 

 
f) What is the direction and magnitude of the Pointing vector S

G
 at a distance r R=  

from the center of the capacitor. 
 

g) By integrating S  over an appropriate surface, find the power that flows into the 
capacitor. 

G

 
h) How does your answer in part g) compare to your answer in part c)?  

 



 
Problem 1 Solutions: 
 
(a) If we ignore fringing fields then we can calculate the electric field using Gauss’s Law, 
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By superposition, the electric field is non-zero between the plates and zero everywhere 
else. Choose a Gaussian cylinder passing through the lower plate with its end faces 
parallel to the plates. Let capA denote the area of the endface. The surface charge density 

is given by 2/Q Rσ π= . Let  denote the unit vector pointing from the lower plate to the 
upper plate. Then Gauss’ Law becomes 
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which we can solve for the electric field 
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(b) The total energy stored in the electric field is given by 
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Substitute the result for the electric field intot he energy equation yields 
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(c) The rate of change of the stored electric energy is found by taking the time derivative 
of the energy equation 
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The current flowing to the plate is equal to  
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Substitute the expression for the current into the expression for the rate of change of the 
stored electric energy yields  
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(d) We shall calculate the magnetic field by using the generalized Ampere’s Law, 
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We choose a circle of radius  passing through the point  as the Amperian loop 
and the disk defined by the circle as the open surface with the circle as its boundary. We 
choose to circulate around the loop in the counterclockwise direction as seen from above. 
This means that flux in the positive -direction is positive.  
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The left hand side (LHS) of the generalized Ampere’s Law becomes 
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The conduction current is zero passing through the disk, since no charges are moving 
between the plates. There is an electric flux passing through the disk. So the right hand 
side (RHS) of the generalized Ampere’s Law becomes 
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Take the time derivative of  the expression for the electric field and the expression for the  
current, and substitute it into the RHS of the generalized Ampere’s Law:  
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 Equating the two sides of the generalized Ampere’s Law yields 
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Finally the magnetic field between the plates is then 
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The sign of the magnetic field is positive therefore the magnetic field points in the 
counterclockwise direction (consistent with our sign convention for the integration 
direction for the circle) as seen from above. Define the unit vector  such that is it 
tangent to the circle pointing in the counterclockwise direction, then  
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(f) The Poynting vector at a distance r R=  is given by 
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Substituting the electric field and the magnetic field (setting r R= ) into the above 
equation, and noting that , yields ˆˆ ˆ× = −k θ r
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So the Poynting vector points inward with magnitude  
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(g) The power flowing into the capacitor is the closed surface integral 
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The Poynting vector points radially inward so the only contribution to this integral is 
from the cylindrical body of the capacitor. The unit normal associated with the area 
vector for a closed surface integral always points outward, so on the cylindrical body  

ˆd da=aG r . Use this definition for the area element and the power is then 
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The Poynting vector is constant and the area of the cylindrical body is 2 Rdπ , so  
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The minus sign correspond to power flowing into the region. 
 
(h) The two expressions for power are equal so the power flowing in is equal to the 
change of energy stored in the electric fields. 
 



Problem 2: 
 
A coaxial cable consists of two concentric long 
hollow cylinders of zero resistance; the inner 
has radius , the outer has radius b , and the 
length of both is l , with 

a
l >> b , as shown in 

the figure. The cable transmits DC power from 
a battery to a load.  The battery provides an 
electromotive force ε  between the two 
conductors at one end of the cable, and the load 
is a resistance  connected between the two 
conductors at the other end of the cable.  A current 

R
I  flows down the inner conductor 

and back up the outer one. The battery charges the inner conductor to a charge  and 
the outer conductor to a charge + .  
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Q

 
(a) Find the direction and magnitude of the electric field E

G
 everywhere. 

 
(b) Find the direction and magnitude of the magnetic field B

G
 everywhere. 

 
(c) Calculate the Poynting vector S

G
 in the cable. 

 
(d) By integrating S  over appropriate surface, find the power that flows into the coaxial 
cable. 

G

 
(e) How does your result in (d) compare to the power dissipated in the resistor? 
 
 
Problem 2 Solutions: 
 
(a) Consider a Gaussian surface in the form of a cylinder with radius r and length l, 
coaxial with the cylinders.  Inside the inner cylinder (r<a) and outside the outer cylinder 
(r>b) no charge is enclosed and hence the field is 0.  In between the two cylinders 
(a<r<b) the charge enclosed by the Gaussian surface is –Q, the total flux through the 
Gaussian cylinder is 
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(b) Just as with the E field, the enclosed current Ienc in the Ampere’s loop with radius r is 
zero inside the inner cylinder (r<a) and outside the outer cylinder (r>b) and hence the 
field there is 0.  In between the two cylinders (a<r<b) the current enclosed is –I. 

 



Applying Ampere’s law, 
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(c) For , the Poynting vector is  bra <<
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On the other hand, for ar <  and , we have br > 0=S

G
. 

 
(d) With , the power is  ( ˆ2d r dr=A

G
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(e) Since 

0 0

ln
2 2

b

a

Q Q bd dr
rl l a

⎛ ⎞= ⋅ = = =⎜ ⎟
⎝ ⎠∫ ∫E s

G Gε
π ε π ε

IR  

 

the charge Q is related to the resistance R by 02
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which is equal to the rate of energy dissipation in a resistor with resistance R. 



Problem 3: 
 
A capacitor consists of two circular plates of radius a 
separated by a distance d (assume  
d << a). The center of each plate is connected to the 
terminals of a voltage source by a thin wire. A switch 
in the circuit is closed at time t = 0 and a current I(t) 
flows in the circuit. The charge on the plate is related 

to the current according to ( )( ) dQ tI t
dt

= .   We begin 

by calculating the electric field between the plates. 
Throughout this problem you may ignore edge effects.  
We assume that the electric field is zero for r > a.   
 
(a) Use Gauss’ Law to find the electric field between the plates as a function of time , in 
terms of Q(t), a, 

t

0ε , and π .   The vertical direction is the  direction.   k̂
 
(b)  Now take an imaginary flat disk of radius r < a inside the capacitor, as shown below.   

 
Using your expression for E

G
above, calculate the 

electric flux through this flat disk of radius r < a  in 
the plane midway between the plates, in terms of r, 
Q(t), a, and 0ε .    Take the surface normal to the 

imaginary disk to be in the  direction.   k̂
 
(c) Calculate the Maxwell displacement current, 
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through the flat disc of radius r < a  in the plane midway between the plates, in terms of 
r, I(t), and a.   Remember, there is really not a “current” there, we just call it that to 
confuse you. 
 
(d) What is the conduction current

S
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 through the flat disk of radius r < a?  

“Conduction” current just means the current due to the flow of real charge across the 
surface (e.g. electrons or ions). 
 
(e) Since the capacitor plates have an axial symmetry and we know that the magnetic 
field due to a wire runs in azimuthal circles about the wire, we assume that the magnetic 
field between the plates is non-zero, and also runs in azimuthal circles.  
 



 
 

Choose for an Amperian loop, a circle of radius r < a in the plane midway between the 
plates. Calculate the line integral of the magnetic field around the circle, 
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Express your answer in terms of B
G

, π , and .  The line element r dsG is right-handed with 

respect to , that is counterclockwise as seen from the top. dA
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(f)  Now use the results of your answers above, and apply the generalized Ampere’ Law 
Equation to find the magnitude of the magnetic field at a distance r < a  from the axis. 
Your answer should be in terms of r, I(t), oμ , π , and a. 
 
Problem 3 Solutions: 
 
(a) The electric field between the plates is  
 
(b) The electric flux through the disk of radius r is  
 

( )
2 2

2
2 2

0 0disk
E

Q r Q rd E r
a a

Φ = ⋅ = = =∫∫ E A
GG ππ

ε π ε
 

 

2
0 0

( ) ( ) ˆ ˆQ t Q td EA
a

⋅ = = ⇒ = =∫∫ E A E k k
GG G

w
0

σ
ε π ε ε

 

 
(c) Using the above equation, the displacement current is 
  

2 2

0 0 2 2
0disk

( ) ( ) ( )d
d d Q t r dQ t rI d I
dt dt a dt a a

⎛ ⎞
= ⋅ = = =⎜ ⎟

⎝ ⎠
∫∫ E A

2

2

rt
GG

ε ε
ε

 

 
(d) The conduction current through the flat disk is  zero.
(e) The line integral of the magnetic field around the circle is
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(f) The magnetic field at a distance r < a is  
 



2
0

0 0 2 2(2 )
2d

I rrB r I I B
a a

⎛ ⎞
= = ⇒ =⎜ ⎟

⎝ ⎠

μπ μ μ
π

 

 
 
 
 



MIT OpenCourseWare
http://ocw.mit.edu 

8.02SC Physics II: Electricity and Magnetism
Fall 2010
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	(e)
	 
	 Problem 2:

