
Electric Potential and Gauss’s Law, Configuration Energy 
Challenge Problem Solutions 

 
Problem 1: 
 
Consider a very long rod, radius R and charged to a uniform linear charge density λ. 
 
a)  Calculate the electric field everywhere outside of this rod (i.e. find ( )E r

G G ). 
 
b) Calculate the electric potential everywhere outside, where the potential is defined to 

be zero at a radius 0R R>  (i.e. ( )0 0V R ≡ ) 
 
Problem 1 Solution:  
 
(a)This is easily calculated using Gauss’s Law and a cylindrical Gaussian surface of 
radius r and length l.  By symmetry, the electric field is completely radial (this is a “very 
long” rod), so all of the flux goes out the sides of the cylinder: 
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(b) To get the potential we simply integrate the electric field from R  to wherever we 
want to know it (in this case r): 
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Problem 2:  
 
Estimate the largest voltage at which it’s reasonable to hold high voltage power lines.  
Then check out this video, care of a Boulder City, Nevada power company. Air ionizes 
when electric fields are on the order of 6 -3 10  V m 1× ⋅ . 
 
Problem 2 Solution: In order to answer this question we have to think about what 
happens if we go to very high voltages.  What breaks down?  The problem with high 
voltages is that they lead to high fields.  And high fields mean breakdown.   
 
You derived the voltage and field in problem 3 
: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 02 ; 2 ln lnE r r V r R r V r E r r R rλ πε λ πε= = ⇒ = 0  
 

The strongest field, and hence breakdown, appears at r = R ~ 1 cm, the radius of a power 
line (that makes the diameter just under 1 inch – it might be 3 or 4 times that big but 
probably not ten times).  The voltage is defined relative to some ground, either another 
cable (probably R0 ~ 1 m away) or at the most the real ground (R0 ~ 10 m away).  So,  
 

( ) ( )( ) ( )6 -1 5
max max 0ln 3 10  V m 1 cm ln 10 m 1 cm 2 10  VV E R R R= = × ⋅ ≅ ×  

 
As it turns out, a typical power-line voltage is about 250 kV, about as large as we 
estimate here.  Some high voltage lines can even go up to 600 kV though (or double that 
for AC voltages).  They must use larger diameter cables. 
 
By the way, you can tell that breakdown is a real concern.  In humid weather (during 
rainstorms for example) you will sometimes hear crackling coming from the power lines.  
This is corona discharge, a high voltage, low current breakdown, similar to the crackling 
you hear from the Van de Graff generator in class.  The movie is of an arc discharge, a 
very high current phenomenon that can be very dangerous. 

http://web.mit.edu/8.02t/www/materials/ProblemSets/PS03_Video.mpeg


Problem  3: 
Consider a uniformly charged sphere of radius R  and charge . Find the electric 
potential difference between any point lying on a sphere of radius  and the point at the 
origin, i.e.  . Choose the zero reference point for the potential at , i.e. 

. How does your expression for  change if you chose the zero reference 
point for the potential at r , i.e. 

Q
r

( ) (0)V r V− 0r =
(0) 0V = ( )V r

= ∞ ( ) 0V ∞ = . 
 
Problem 3 Solution: In order to solve this problem we must first calculate the electric 
field as a function of  for the regions 0r r R< <  and r > R . Then we integrate the 
electric field to find the electric potential difference between any point lying on a sphere 
of radius  and the point at the origin. Because we are computing the integral along a 
path we must be careful to use the correct functional form for the electric field in each 
region that our path crosses. 

r

 
There are two distinct regions of space defined by the charged sphere: region I:  , 
and region II:  . So we shall apply Gauss’s Law in each region to find the electric 
field in that region. 

r R<
r R>

 
For region I: , we choose a sphere of radius r R< r  as our Gaussian surface.  Then, the 
electric flux through this closed surface is 
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The sphere has a uniform charge density 3/(4 / 3)Q Rρ π= . Because the charge 
distribution is uniform, the charge enclosed in our Gaussian surface is given by 
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Now we apply Gauss’s Law: 
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to arrive at: 



3
2

3
0

4I
Q rE r

R
π

ε
⋅ = . 

 
which we can solve for the electric field inside the sphere  
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For region II: : we choose the same spherical Gaussian surface of radius , and 
the electric flux has the same form 

r R> r R>
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All the charge is now enclosed, encQ Q= , then Gauss’s Law becomes 
 

2

0

4II
QE rπ
ε

⋅ = . 

 
We can solve this equation for the electric field 
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In this region of space, the electric field falls off as  as we expect since outside the 
charge distribution, the sphere acts as if all the charge were concentrated at the origin. 
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Our complete expression for the electric field as a function of   is then r
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We can now find the electric potential difference between any point lying on a sphere of 
radius  and the origin, i.e.  r ( ) (0)V r V− . 
 
We begin by considering values of  such that r 0 r R< < . We shall calculate the potential 
difference by calculating the line integral 
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We use as integration variable  and integrate from r′ 0r′ =  to r r′ = : 
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For : we are taking a path form the origin through regions I and regions II and so 
we need to use both functional forms for the electric field in the appropriate regions. The 
potential difference between any point lying on a sphere of radius  and the origin is 
given by the line integral expression 
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Using our results for the electric field we get that  
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This becomes 
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Integrating yields 
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Substituting in the endpoints yields 
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A little algebra then yields 
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Thus the electric potential difference between any point lying on a sphere of radius r  and 
the origin (where )  is given by (0) 0V =
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When we set , we have an expression for the electric potential function (0) 0V =
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We plot vs.  in the figure below. Note that the graph of the electric potential 
function is continuous at . 
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When we set , the potential difference between the sphere at infinity and the origin 
is 

r = ∞
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If we had chosen the zero reference point for the electric potential at , with 

. The with that choice, we have that 
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This amounts to just adding the constant 
0

3
8

Q
Rπε

 to the above results for the potential 

function  giving ( )V r
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In the above expression we can easily check that ( ) 0V ∞ = . Equivalently we shift our 
previous graph up by 03 / 8Q Rπε  as shown in the graph below. 
 

 
 
 
 



Problem 4: 
 
An infinite slab of charge carrying a charge per unit volume ρ  has a charged sheet 
carrying charge per unit area 1σ  to its left and a charged sheet carrying charge per unit 
area 2σ  to its right (see top part of sketch). The lower plot in the sketch shows the 
electric potential  in volts due to this slab of charge and the two charged sheets as a 
function of horizontal distance 

( )V x
x  from the center of the slab.  The slab is  4 meters wide 

in the x -direction, and its boundaries are located at 2 mx = − and 2 mx = + , as indicated.  
The slab is infinite in the y  direction and in the   direction (out of the page).  The 
charge sheets are located at  and

z
6 mx = − 6 mx = + , as indicated. 

 
 
(a) The potential is a linear function of x in the region  ( )V x 6 m 2 mx− < < − .  What 
is the electric field in this region?   

 
(b) The potential V(x) is a linear function of x in the region 2 m 6 mx< < . What is the 
electric field in this region? 
 
(c) In the region , the potential V(x) is a quadratic function of x given by 

the equation 

2m 2 mx− < <

( ) 2
2

5 V 25 V
16 4
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= −  .  What is the electric field in this region?    

 
(d) Use Gauss’s Law and your answers above to find an expression for the charge density 
ρ  of the slab.  Indicate the Gaussian surface you use on a figure.  
 

 

 

 
(e) Use Gauss’s Law and your answers above to find the two surface charge densities of 
the left and right charged sheets.  Indicate the Gaussian surface you use on a figure. 
  
 
Problem 4 Solution:  
(a) 
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(c) In the region inside the slab, the electric field is  
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(d) 
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(e)Solution: The electric field vanishes in the regions  and 6 mx > 6 mx < −  (the electric 
potential is zero and remains zero so the gradient is zero).   

 
 

Using Gauss’s law with the Gaussian pillboxes indicated in the figure, we have 
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In a similar manner, 2 0
5 V
4 m

σ ε= . 

 
A common mistake is to think that the sign must flip because the electric field sign flips.  
Note that because the area vector of the Gaussian pillbox also flips direction this is NOT 
true.  It is very important to draw pictures and show the vector directions.  If the vectors 



( E  and ) are in the same direction then the dot product (and the enclosed charge) is 
positive. 
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Problem 5:  
 
 
Three infinite sheets of charge are located at x d= − , 0x = , and x d= , as shown in the 
sketch.  The sheet at  has a charge per unit area of 0x = 2σ , and the other two sheets 
have charge per unit area of σ− .   
 

 
 
a)  What is the electric field in each of the four regions I-IV labeled in the sketch?  
Clearly present your reasoning, relevant figures, and any accompanying calculations. Plot 
the x component of the electric field , xE , on the graph on the bottom of the next page.  
Clearly indicate on the vertical axis the values of xE  for the different regions.  
 
 
b)  Find the electric potential in each of the four regions I-IV labeled above, with the 
choice that the potential is zero at x = +∞  i.e. ( ) 0V +∞ = . Show your calculations.   Plot 
the electric potential as a function of x on the graph on the bottom of the next page.  
Indicate units on the vertical axis.   
 
 
c)  How much work must you do to bring a point-like object with charge   in from 
infinity to the origin ? 

Q+
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Problem 5 Solutions:   
(a) We begin by choosing a Gaussian cylinder with end caps in regions I and IV as 
shown in the figure below. The total charge enclosed is zero and hence the electric flux 
on the endcaps must be zero. Thus the electric field must be zero in regions I and IV.  
 



 
 
This turns out to be correct but the conclusion depends on an additional argument based 
on symmetry. If the electric field is non-zero on the endcaps it must point either in the 
+x-direction in both regions I and IV or in the –x-direction in both regions I and IV.  
Neither is possible due to the symmetry of the charge distribution. For example, if the 
electric field pointed in the +x-direction in both regions I and IV. Then if we looked at 
the charge distribution from the other side of the plane of the paper, the field should point 
in the –x-direction. However the charge distribution is identical when looking from the 
other side of the paper. Therefore the field must point in the +x-direction according to our 
original assertion. Therefore by symmetry the only possibility is for the fields in regions I 
and IV to point toward  or away from 0x = 0x = . In the first case the flux would be non-
zero on our Gaussian surface but it must be zero because the charge enclosed is zero. 
Hence the electric field in regions I and IV is zero. (A similar argument holds if we 
assume that the field points in the –x-direction in both regions I and IV.)  
 
For  regions II and III, we choose a Gaussian cylinder with end caps in regions II and III 
as shown in the figure below.  

 
 

The electric flux on the endcaps is 2d E⋅ = A∫∫E A
GG

w . The charge enclosed divided by 0ε  is 

0/ 2 /encQ 0Aε σ ε= . Therefore by Gauss’s Law, 02 2 /EA Aσ ε=  which implies that the 
magnitude of the electric field is 0/E σ ε= . Thus the electric field is given by 
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The graph of the x component of the electric field, xE  vs x  is shown on the graph below. 

 
 
 
(b) The electric potential difference between infinity and a point  located at P x , is given 
by 
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We shall evaluate this integral for points in each region. We start with  anywhere in 
region IV, . Because the electric field in region IV is zero, the integral is zero, 
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If  is anywhere in region III,  P 0 x d< < + then 
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If  is anywhere in region II,  then P 0d x− < <
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If  is anywhere in region I,  P x d< −  then 
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Because the electric field is continuous we can write our result as 
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Note this can be written as 
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This result looks good because the area under the graph of the x component of the electric 
field, xE  vs x  for the region  is zero. The plot of the electric potential as a 
function of x on the graph is shown below with units of [V] on the vertical axis.   

d x d− < <

 

 
 
(c) The work you must do is equal to the change in potential energy (assuming the point-
like object begins and ends at rest). Therefore 
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Problem 6:  
 
You may find the following integrals helpful in this answering this question. 
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Consider a charged infinite cylinder of radius R .  
 

 
The charge density is non-uniform and given by  
 

( ) ;r br r Rρ = < , 
 
where  is the distance from the central axis and b  is a constant. r
 
a) Find an expression for the direction and magnitude of the electric field 
everywhere i.e. inside and outside the cylinder. Clearly present your reasoning, relevant 
figures, and any accompanying calculations. 

 
 
b) A point-like object with charge q+  and mass  is released from rest at the point 
a distance 

m
2R   from the central axis of the cylinder. Find the speed of the object when it 

reaches a distance  from the central axis of the cylinder. 3R
 
Problem 6 Solutions: 
 
(a) Because the charge distribution defines two distinct regions of space, region I defined 
by  and region II defined by , we must apply Gauss’s Law twice to find the 
electric field everywhere. 

r R< r R>

 
In region I, where , we choose a Gaussian cylinder of radius  and length .  r R< r l
 

 
 



Because the electric field points away from the central axis, the electric flux on our 
Gaussian surface is  
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Because the charge density is non-uniform, we must integrate the charge density. We 
choose as our integration volume a cylindrical shell of radius  r′ , length  and thickness 

. The integration volume is then 
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Therefore the charge divided by 0ε  enclosed within our Gaussian surface is  
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Therefore Gauss’s Law becomes 
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We can now solve for the direction and magnitude of the electric field when , r R<
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In region II  where , we choose a Gaussian cylinder of radius  and length .  r R> r l
 

 



 
Because the electric field points away from the central axis, the electric flux on our 
Gaussian surface is  
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We again must integrate the charge density but this time taking our endpoints as  
and . Therefore the charge divided by 

0r =
r R= 0ε  enclosed within our Gaussian surface is  
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Therefore Gauss’s Law becomes 
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We can now solve for the direction and magnitude of the electric field when , r R>
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Collected our results we have that 
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(b) The change in kinetic energy when the object moves from a distance 2R   from the 
central axis of the cylinder to a distance  is given by 3R
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Because the particle was released at rest, (2 ) 0K R = , and 2(3 ) (1/ 2) fK R mv= , the final 
speed of the object is 
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The electric potential difference between two points in region II is given by 
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Therefore the speed of the object when it reaches a distance   from the central axis of 
the cylinder is 
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