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Electric Potential 

3.1 Potential and Potential Energy  

In the introductory mechanics course, we have seen that gravitational force from the 
Earth on a particle of mass m located at a distance r from Earth’s center has an inverse-
square form: 

F 
r

g = −G M
2 

m r̂ (3.1.1)
r 

−11 2 2where G = 6.67×10 N ⋅m /kg is the gravitational constant and r̂ is a unit vector 
pointing radially outward. The Earth is assumed to be a uniform sphere of mass M. The 
corresponding gravitational field g r , defined as the gravitational force per unit mass, is 
given by 

r 

g r = 
Fg = −  

GM r̂ (3.1.2)2m r 

Notice that g r only depends on M, the mass which creates the field, and r, the distance 
from M. 

Figure 3.1.1 

Consider moving a particle of mass m under the influence of gravity (Figure 3.1.1). The 
work done by gravity in moving m  from A to B is 

r r r ⎛ GMm ⎞ ⎡ GMm ⎤ 
rB 

⎛ 1 1 ⎞Wg = ∫Fg ⋅d s = ∫rA

B 

⎜⎝ 
− 

r 2 ⎟⎠ 
dr  =

⎣⎢ r ⎦⎥ rA 

=GMm  ⎜
⎝ rB 

− 
rA 
⎟
⎠ 

(3.1.3) 

The result shows that Wg is independent of the path taken; it depends only on the 
endpoints A and B. It is important to draw distinction between Wg , the work done by the 
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field and Wext , the work done by an external agent such as you. They simply differ by a 
negative sign: W = −W .g ext 

Near Earth’s surface, the gravitational field g r is approximately constant, with a 
magnitude g GM  = / rE 

2 ≈ 9.8m/s  2 , where rE is the radius of Earth. The work done by 
gravity in moving an object from height yA  to yB  (Figure 3.1.2) is 

g ∫ g ds =∫A 
mg cosθ ds = −  ∫A 

mg cos φ ds = −  ∫yA 

mg dy = −  mg y B − yA ) (3.1.4)W = F 
r 
⋅ r

B B yB ( 

Figure 3.1.2 Moving a mass m from A to B. 

The result again is independent of the path, and is only a function of the change in 
vertical height yB − yA . 

In the examples above, if the path forms a closed loop, so that the object moves around 
and then returns to where it starts off, the net work done by the gravitational field would 

r 
be zero, and we say that the gravitational force is conservative. More generally, a force F 
is said to be conservative if its line integral around a closed loop vanishes: 

Ñ∫ F 
r 
⋅d 

r 
s = 0 (3.1.5) 

When dealing with a conservative force, it is often convenient to introduce the concept of 
potential energy U. The change in potential energy associated with a conservative forceur
F  acting on an object as it moves from A to B is defined as: 

U UB −U A = −  ∫A

B 
F 
r 
⋅d rs = −  WΔ = (3.1.6) 

where W is the work done by the force on the object. In the case of gravity, W W  and= g

from Eq. (3.1.3), the potential energy can be written as 

GMmU g = −  +U0 (3.1.7)
r 
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where U0 is an arbitrary constant which depends on a reference point. It is often 
convenient to choose a reference point where U0 is equal to zero. In the gravitational 
case, we choose infinity to be the reference point, with 0 ( = ∞  =  0 . Since Ug dependsU r ) 
on the reference point chosen, it is only the potential energy difference ΔU that has g 

physical importance. Near Earth’s surface where the gravitational field g r  is 
approximately constant, as an object moves from the ground to a height h, the change in 
potential energy is ΔUg = +  mgh , and the work done by gravity is Wg = −mgh . 

A concept which is closely related to potential energy is “potential.” From ΔU , the 
gravitational potential can be obtained as  

ΔU B r r B r rΔ = g = −  ( /  m d  ) ⋅ sVg m ∫A 
Fg s = −  ∫A

g ⋅d (3.1.8) 

Physically ΔVg represents the negative of the work done per unit mass by gravity to 
move a particle from A to B . 

Our treatment of electrostatics is remarkably similar to gravitation. The electrostatic force ur 
Fe given by Coulomb’s law also has an inverse-square form. In addition, it is also 

ur 
conservative. In the presence of an electric field E , in analogy to the gravitational field 
g r , we define the electric potential difference between two points A and B as 

V ∫
B

( /F 
r 

q d  0 ) ⋅ r s = −  
B

E 
r 
⋅ rΔ = −  e ∫ d s (3.1.9)

A A 

where q0 is a test charge. The potential  difference ΔV represents the amount of work 
done per unit charge to move a test charge q0  from point A to B, without changing its 
kinetic energy. Again, electric potential should not be confused with electric potential 
energy. The two quantities are related by 

Δ =  0U q VΔ  (3.1.10) 

The SI unit of electric potential is volt (V): 

1volt =1 joule/coulomb  (1 V= 1 J/C) (3.1.11) 

When dealing with systems at the atomic or molecular scale, a joule (J) often turns out to 
be too large as an energy unit. A more useful scale is electron volt (eV), which is defined 
as the energy an electron acquires (or loses) when moving through a potential difference 
of one volt: 
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1eV = (1.6 ×10 −19 C)(1V) =1.6 ×10−19 J (3.1.12) 

3.2 Electric Potential in a Uniform Field 

Consider a charge +q moving in the direction of a uniform electric field E 
ur 
= E0 ( )ĵ , as− 

shown in Figure 3.2.1(a). 

(b)(a) 
ru


Figure 3.2.1 (a) A charge q which moves in the direction of a constant electric field E . 
r that moves in the direction of a constant gravitational field g . 

, the potential difference between points A and B is 

(b) A mass m

ru 
ESince the path taken is parallel to 

given by 
B ur Br
s = − 
ΔV V  V  −= B A = − 
∫
 E ⋅d  E d∫ s = − 
E0d < 0 (3.2.1)
0A A 

implying that point B is at a lower potential compared to A. In fact, electric field lines 
always point from higher potential to lower. The change in potential energy is 
ΔU U  U  = B − A = −  qE0d . Since q > 0, we have U 0 , which implies that the potential Δ <  

energy of a positive charge decreases as it moves along the direction of the electric field. 

r 

The corresponding gravitational analogy, depicted in Figure 3.2.1(b), is that a mass m 
loses potential energy ( Δ = −  U mgd ) as it moves in the direction of the gravitational 
field g . 


Figure 3.2.2 Potential difference due to a uniform electric field 
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ru

What happens if the path from A to B is not parallel to E , but instead at an angle θ, as 
shown in Figure 3.2.2? In that case, the potential difference becomes 

ur 
ur  
E  s =  rr −s = ⋅ −
E s  0 cosθ = −E y  0 (3.2.2)


B
V VB VA ∫Δ =  −  = − E ⋅d 

A 

Note that y increase downward in Figure 3.2.2. Here we see once more that moving along 
the direction of the electric field E leads to a lower electric potential. What would the 
change in potential be if the path were A → →C B ? In this case, the potential difference 
consists of two contributions, one for each segment of the path: 

V Δ +VCA BC (3.2.3)Δ = ΔV 

When moving from A to C, the change in potential is ΔV = −E y  . On the other hand,CA 0 

ru 

ru

when going from C to B, ΔVBC = 0 since the path is perpendicular to the direction of E . 
Thus, the same result is obtained irrespective of the path taken, consistent with the fact ur
that E is conservative. 

Notice that for the path A → →C B , work is done by the field only along the segment 
AC which is parallel to the field lines. Points B and C are at the same electric potential, 
i.e.,VB =VC . Since Δ = Δ , this means that no work is required in moving a charge U q V
from B to C. In fact, all points along the straight line connecting B and C are on the same 
“equipotential line.” A more complete discussion of equipotential will be given in 
Section 3.5. 

3.3 Electric Potential due to Point Charges 

ru
Next, let’s compute the potential difference between two points A and B due to a charge 

πε0r
2 )r̂ , where r̂ is a unit vector+Q. The electric field produced by Q is E = ( / 4  Q 

pointing toward the field point.   

Figure 3.3.1 Potential difference between two points due to a point charge Q. 

r
From Figure 3.3.1, we see that ˆ d⋅ =  r s  ds  cos θ = dr  , which gives 

3-6 



V VB −VA ∫
B Q 

2 r sˆ ⋅d r = ∫
B Q 

2 dr = 
Q 

⎜
⎛ 1 1 

⎟
⎞

Δ = = −  −  −  (3.3.1)
A 4πε0r A 4πε0r 4πε0 ⎝ rB rA ⎠ 

Once again, the potential difference ΔV depends only on the endpoints, independent of 
the choice of path taken. 

As in the case of gravity, only the difference in electrical potential is physically 
meaningful, and one may choose a reference point and set the potential there to be zero. 
In practice, it is often convenient to choose the reference point to be at infinity, so that the 
electric potential at a point P becomes 

P ur rV = −  ⋅d∫ E s  (3.3.2)P ∞ 

With this reference, the electric potential at a distance r away from a point charge Q 
becomes 

1 Q( )  =V r  (3.3.3)
4πε0 r 

When more than one point charge is present, by applying the superposition principle, the 
total electric potential is simply the sum of potentials due to individual charges: 

( )  = 
1 ∑ qi = ke∑ qiV r  (3.3.4)

4πε0 i ri i ri 

A summary of comparison between gravitation and electrostatics is tabulated below: 

Gravitation Electrostatics 

Mass m Charge q 

Gravitational force 2 
ˆ g 

MmG 
r 

F = −  r 
r

 Coulomb force 2 
ˆ e e 

Qqk 
r 

=F r 
r 

Gravitational field /g m=g F  
rr 

Electric field /e q=E F  
r r 

Potential energy change 
B 

gA 
U dΔ = −  ⋅∫ F s 

r r Potential energy change 
B 

eA 
U dΔ = −  ⋅∫ F s 

r r 

Gravitational potential 
B 

g A 
V d= −  ⋅∫ g s r r  Electric Potential 

B 

A 
V d= −  ⋅∫ E  s  

r r 

For a source M: g 
GMV 

r 
= −  For a source Q: e 

QV k  
r 

= 
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| |gU  mgd  Δ =  (constant g r ) | |U  qEd  Δ =  (constant E 
ur 

) 

3.3.1 Potential Energy in a System of Charges 

If a system of charges is assembled by an external agent, then U W = +  WextΔ = −  . That is, 
the change in potential energy of the system is the work that must be put in by an external 
agent to assemble the configuration. A simple example is lifting a mass m through a 
height h.  The work done by an external agent  you, is +mgh (The gravitational field 
does work −mgh ). The charges are brought in from infinity without acceleration i.e. they 
are at rest at the end of the process. Let’s start with just two charges q1  and q2 . Let the 
potential due to q1  at a point P be V1  (Figure 3.3.2). 

Figure 3.3.2 Two point charges separated by a distance r12 . 

The work W2 done by an agent in bringing the second charge q2 from infinity to P  is 
then W = q V  . (No work is required to set up the first charge and W = 0 ). Since 2 2 1 1 

V = q / 4πε r , where is the distance measured from q1  to P, we have1  1  0 12  r12 

1 q qU12 =W2 = 1 2  (3.3.5)
4πε0 r12  

If q1  and q2 have the same sign, positive work must be done to overcome the electrostatic 
repulsion and the potential energy of the system is positive, U12 > 0 . On the other hand, if 
the signs are opposite, then U12 < 0  due to the attractive force between the charges.  
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Figure 3.3.3 A system of three point charges. 

To add a third charge q3 to the system (Figure 3.3.3), the work required is 

W3 = q V  1 +V = 3 1 + 2 (3.3.6)
4πε0 ⎝ r13  r23  ⎠

3 ( 2 ) 
q 

⎜
⎛ q q 

⎟
⎞ 

The potential energy of this configuration is then 

1 ⎛ q q  q q q q  ⎞U W= 2 +W3 = ⎜ 1 2  + 1 3  + 2 3 ⎟ =U12 +U13 +U23 (3.3.7)
4πε0 ⎝ r12  r13  r23  ⎠

The equation shows that the total potential energy is simply the sum of the contributions 
from distinct pairs. Generalizing to a system of N charges, we have 

1 N N q q
U = ∑∑ i j  (3.3.8)

4πε0 i=1 j=
> 
1 rij

j i  

where the constraint j > i is placed to avoid double counting each pair. Alternatively, 
one may count each pair twice and divide the result by 2. This leads to 

⎛ ⎞N N N N N 

U = 
1 ∑∑

q qi j  = 
1 ∑qi 

⎜ 1 ∑
q j ⎟ = 

1 ∑ i ( )
8πε0 i=1 j=1 rij 2 i=1 ⎜⎜ 4πε0 j=

≠ 
1 rij 

⎟⎟⎠ 
2 i=1 

qV  r  i (3.3.9) 
j i≠ ⎝ j i  

where ( ) r  (location of qi) due to allV ri , the quantity in the parenthesis, is the potential at ri 

the other charges.   

3.4 Continuous Charge Distribution 

If the charge distribution is continuous, the potential at a point P can be found by 
summing over the contributions from individual differential elements of charge dq . 
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Figure 3.4.1 Continuous charge distribution 

Consider the charge distribution shown in Figure 3.4.1. Taking infinity as our reference 
point with zero potential, the electric potential at P due to dq is 

dV =
0 

1 
4πε  

dq 
r 

(3.4.1) 

Summing over contributions from all differential elements, we have 

V = 
0 

1 
4πε  ∫

dq 
r 

(3.4.2) 

3.5 Deriving Electric Field from the Electric Potential  
ru


r
In Eq. (3.1.9) we established the relation between E

which are separated by a small distance ds , the following differential form is obtained:


and V. If we consider two points 

ru
 r

d r
s =
dx  

dV = −  dE s  (3.5.1)
⋅


ur

î ĵ î ĵk̂ and +
dz  k̂ ,
 we haveE
In Cartesian coordinates, =
E
 E
 E
 dy  +
 +
 +
x y z 

dV = (E î + E ĵ + E k̂ ) (  ⋅ dx ̂i + dy ̂j + dz k̂ ) = E dx + E dy + E dz (3.5.2)x y z x y z 

which implies 

∂V ∂V ∂VEx = −  , Ey = −  , Ez = −  (3.5.3)
∂x ∂y ∂z 

By introducing a differential quantity called the “del (gradient) operator” 

∇ ≡  
∂ î + ∂ ĵ + ∂ k̂ (3.5.4)
∂x ∂y ∂z 
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the electric field can be written as  

E 
ur 
= Ex ̂i + Ey ̂j + Ezk̂ =  −  

⎛
⎜ 
∂V î +  ∂V ĵ + ∂V k̂ ⎞⎟ = −  

⎛
⎜ 
∂ î +  ∂ ĵ + ∂ k̂ ⎞⎟V =  −∇  V 

⎝ ∂x ∂y ∂z ⎠ ⎝ ∂x ∂y ∂z ⎠ 

ru

E = −∇V (3.5.5) 


Notice that ∇ operates on a scalar quantity (electric potential) and results in a vector 
quantity (electric field). Mathematically, we can think of E as the negative of the 

ru 

gradient V of the electric potential . Physically, the negative sign implies that if 
V increases as a positive charge moves along some direction, say x, with 
then there is a non-vanishing component of E in the opposite direction ( −Ex ≠ 0) . In the 
case of gravity, if the gravitational potential increases when a mass is lifted a distance h, 
the gravitational force must be downward. 

ru ∂V / ∂x > 0 , 

If the charge distribution possesses spherical symmetry, then the resulting electric field is 
r 

( )a function of the radial distance r, i.e., E = E r̂ . In this case, dV = −E dr. If V r  isr r 
r


known, then E  may be obtained as 

E 
ur
= Err̂ =  −⎜

⎛ dV 
⎟
⎞ r̂ (3.5.6)

⎝ dr ⎠ 

For example, the electric potential due to a point charge q is V r( )  = q / 4  πε0r . Using the 
ru


above formula, the electric field is simply E = ( 4q/ πε0r
2 )r̂ . 


3.5.1 Gradient and Equipotentials 

Suppose a system in two dimensions has an electric potential V x y( , ) . The curves 
characterized by constant V x y( , ) are called equipotential curves. Examples of 
equipotential curves are depicted in Figure 3.5.1 below. 

Figure 3.5.1 Equipotential curves 
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In three dimensions we have equipotential surfaces and they are described by 
r ur 

V x y z( ,  , )  =constant. Since E = −∇V , we can show that the direction of E is always 
perpendicular to the equipotential through the point. Below we give a proof in two 
dimensions. Generalization to three dimensions is straightforward. 

Proof: 

Referring to Figure 3.5.2, let the potential at a point P x y( , ) be ( ,V x y) . How much is 
V changed at a neighboring point ( + dx  y  + dy  ) ? Let the difference be written as P x  ,


( + dx y , + dy ) − ( ,  ) 
dV =V x V x y 


= ⎢ ( ,  )  + dx  + dy  +L⎥ − ( , )

⎡
V x y  ∂V ∂V ⎤ 

V  x y  ≈ ∂V dx  + ∂V dy  
(3.5.7) 

⎣ ∂x ∂y ⎦ ∂x ∂y 

Figure 3.5.2 Change in V when moving from one equipotential curve to another 

With the displacement vector given by d s r = dx  î + dy  ĵ , we can rewrite dV as 

ur 
dV = ⎜

⎛ ∂
∂ 

V
x 

î + ∂
∂ 

V
y 

ĵ ⎟
⎞
⋅(dx î + dy ĵ ) =  ∇  ( V ) ⋅ds = −  E ⋅d s r  (3.5.8)

⎝ ⎠ 

If the displacement ds r is along the tangent to the equipotential curve through P(x,y), 
then dV = 0  because V is constant everywhere on the curve. This implies that E 

ur 
⊥ d s r 

ur 
along the equipotential curve. That is, E is perpendicular to the equipotential. In Figure 
3.5.3 we illustrate some examples of equipotential curves. In three dimensions they 
become equipotential surfaces. From Eq. (3.5.8), we also see that the change in potential 
dV attains a maximum when the gradient ∇V is parallel to d s r : 

max ⎛⎜ 
dV ⎞

⎟ = ∇V (3.5.9)
⎝ ds ⎠

Physically, this means that ∇V always points in the direction of maximum rate of change 
of V with respect to the displacement s. 
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ur 
Figure 3.5.3 Equipotential curves and electric field lines for (a) a constant E field, (b) a 
point charge, and (c) an electric dipole.  

The properties of equipotential surfaces can be summarized as follows: 

(i)	 The electric field lines are perpendicular to the equipotentials and point from 
higher to lower potentials. 

(ii)	 By symmetry, the equipotential surfaces produced by a point charge form a family 
of concentric spheres, and for constant electric field, a family of planes 
perpendicular to the field lines. 

(iii) The tangential component of the electric field along the equipotential surface is 
zero, otherwise non-vanishing work would be done to move a charge from one 
point on the surface to the other. 

(iv)	 No work is required to move a particle along an equipotential surface. 

A useful analogy for equipotential curves is a topographic map (Figure 3.5.4). Each 
contour line on the map represents a fixed elevation above sea level. Mathematically it is 
expressed as z = f ( , x y  ) = constant . Since the gravitational potential near the surface of 
Earth is Vg = gz  , these curves correspond to gravitational equipotentials. 

Figure 3.5.4 A topographic map 

Example 3.1: Uniformly Charged Rod 

Consider a non-conducting rod of length l having a uniform charge density λ . Find the 
electric potential at P , a perpendicular distance y  above the midpoint of the rod. 
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Figure 3.5.5 A non-conducting rod of length l  and uniform charge density λ . 

Solution: 

Consider a differential element of length dx′ which carries a charge dq = λ dx′ , as shown 
in Figure 3.5.5. The source element is located at (x′,0) , while the field point P is located 
on the y-axis at (0, y) . The distance from dx′  to P is r = (x′2 + y2 )1/  2  . Its contribution to 
the potential is given by 

1 dq 1 λ dx′ dV = = 
4πε0 r 4πε0 (x′2 + y2 )1/ 2  

Taking V to be zero at infinity, the total potential due to the entire rod is 

l / 2λ l / 2  dx′ λ ⎡ 2 2 ⎤V = 
4πε ∫−l / 2  2 2 

= 
4πε 

ln ⎣ x
′ + x′ + y ⎦


0 x′ + y 0
 −l / 2  

λ ⎡ ( / 2) l ( / 2) 2 + 2 ⎤
⎥ 

(3.5.10) 

= ln ⎢
+ l y 

2 24πε0 ⎢⎣ −( / 2) l + ( / 2) l + y ⎥⎦ 

where we have used the integration formula 

dx′ 
∫ x′2 + y2 

= ln (x′ + x′2 + y2 ) 

A plot of ( ) /V0 , where V0 = λ πε  0 , as a function of y / l  is shown in Figure 3.5.6V y  / 4  
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Figure 3.5.6 Electric potential along the axis that passes through the midpoint of a non
conducting rod. 

In the limit l ? y,  the potential becomes 

⎡ (  / 2)  + l / 2 1 (2  y /  )  2 ⎤
⎥ = ln 

⎡
⎢ 

1+ 1 (2  y / )  l 2 ⎤
⎥λ l + l λ +

V = ln ⎢
4πε0 ⎣ −( / 2)  + l / 2  1  + (2  y / )  2 4πε −1+ 1+ (2  y /  )  2 ⎥⎦⎢ l l ⎥⎦ 0 ⎢⎣ l 

λ ⎛ 2 ⎞ λ ⎛ l2 ⎞
≈ 

4πε 
ln ⎜ 2y2 / l2 ⎟ = 

4πε 
ln ⎜ y2 ⎟ (3.5.11) 

0 ⎝ ⎠ 0 ⎝ ⎠ 
λ ⎛ ⎞l = ln ⎜ ⎟2πε y0 ⎝ ⎠  

The corresponding electric field can be obtained as   

∂V λ l / 2E = −  =  y 
l 2 y2∂y 2πε0 y ( / 2)  + 

in complete agreement with the result obtained in Eq. (2.10.9). 

Example 3.2: Uniformly Charged Ring 

Consider a uniformly charged ring of radius R and charge density λ (Figure 3.5.7). What 
is the electric potential at a distance z from the central axis? 
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Figure 3.5.7 A non-conducting ring of radius R with uniform charge density λ . 

Solution: 

Consider a small differential element dl = R dφ′ on the ring. The element carries a 
charge dq = λ dl = λR d φ′ , and its contribution to the electric potential at P is 

1 dq 1 λR d φ′ dV = = 
2 24πε0 r 4πε0 R + z 

The electric potential at P due to the entire ring is 

V = ∫ dV  = 
1 λR 

�∫ dφ′ = 
1 2πλ  R = 

1 Q (3.5.12)
2 2 2 2 2 24πε0 R + z 4πε0 R + z 4πε0 R + z 

where we have substituted Q = 2πRλ for the total charge on the ring. In the limit z � R , 
the potential approaches its “point-charge” limit: 

1 QV ≈ 
4πε0 z 

From Eq. (3.5.12), the z-component of the electric field may be obtained as  

∂V ∂ ⎛ 1 Q ⎞ 1 Qz  Ez = −  
∂z 

= −
∂z ⎝
⎜ 4πε0 R2 + z2 ⎟⎠

= 
4πε0 (R2 + z2 )3/ 2  (3.5.13) 

in agreement with Eq. (2.10.14). 

Example 3.3: Uniformly Charged Disk 

Consider a uniformly charged disk of radius R and charge densityσ  lying in the xy
plane. What is the electric potential at a distance z  from the central axis? 

3-16 



Figure 3.4.3 A non-conducting disk of radius R and uniform charge density σ. 

Solution: 

Consider a circular ring of radius r′  and width dr′ . The charge on the ring is 
dq′ =σ dA′ = σ (2π r dr ′ ′). The field point P is located along the z -axis a distance z 
from the plane of the disk. From the figure, we also see that the distance from a point on 
the ring to P is r = (r′2 + z2 )1/  2  . Therefore, the contribution to the electric potential at P 
is 

1 dq 1 σ π r dr )(2  ′ ′  
dV = = 

2 24πε0 r 4πε0 r′ + z 

By summing over all the rings that make up the disk, we have 

Rσ 2π r dr  σ 2 2V = 
4πε ∫0 

R 

2 

′ ′  
2 
= 

2ε ⎣
⎡ r′ + z ⎤ σ 2 2 z ⎤⎦ (3.5.14)= ⎡ R + z − | |

2ε ⎣
0 r′ + z 0 

⎦ 
0 0 

In the limit | z |� R , 

R2 + 2 = z 
⎛
⎜ 

R 
2

2 ⎞
⎟ 

1/ 2 

| 
⎛
⎜ 

R2

2 

⎞
⎟z | | 1+ = z | 1+ +L , 

⎝ z ⎠ ⎝ 2z ⎠ 

and the potential simplifies to the point-charge limit: 

σ R2 1 ( R2 ) 1σ π  QV ≈ ⋅ = = 
2ε0 2 |  z | 4πε  0 | z | 4πε  0 | z | 

As expected, at large distance, the potential due to a non-conducting charged disk is the 
same as that of a point charge Q. A comparison of the electric potentials of the disk and a 
point charge is shown in Figure 3.4.4. 

Figure 3.4.4 Comparison of the electric potentials of a non-conducting disk and a point 
charge. The electric potential is measured in terms of V0 = Q / 4πε0 R . 
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Note that the electric potential at the center of the disk ( z = 0 ) is finite, and its value is  

Vc =
σR = 

Q 
2 ⋅ 

R = 
1 2Q = 2V0 (3.5.15)

2ε0 πR 2ε0 4πε  0 R 

This is the amount of work that needs to be done to bring a unit charge from infinity and 
place it at the center of the disk.  

The corresponding electric field at P can be obtained as: 

∂V σ ⎡ z z ⎤
Ez = − = ⎢ − ⎥ (3.5.16)

2 2∂z 2ε0 ⎣ | z | R + z ⎦

which agrees with Eq. (2.10.18). In the limit R ? z, the above equation becomes 
Ez =σ / 2ε0 , which is the electric field for an infinitely large non-conducting sheet. 

Example 3.4: Calculating Electric Field from Electric Potential 

Suppose the electric potential due to a certain charge distribution can be written in 
Cartesian Coordinates as 

V x y z) 2 2( ,  , = Ax  y  + Bxyz  

where A , B  and C  are constants. What is the associated electric field? 

Solution: 

The electric field can be found by using Eq. (3.5.3): 

Ex = −
∂V = −2Axy  2 − Byz  
∂x 
∂V 2Ey = −  = −2Ax  y  − Bxz  
∂y 
∂VEz = −  = −Bxy  
∂z 

Therefore, the electric field is E ( 2Axy − ) i − (2  Ax y + Bxz ) j − Bxy k . 
r 
= −  2 Byz ˆ 2 ˆ ˆ 

3.6 Summary 
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r
•	 A force F is conservative if the line integral of the force around a closed loop 

vanishes: 

�∫ F 
r 
⋅ d s r = 0 

ur 
•	 The change in potential energy associated with a conservative force F acting on an 

object as it moves from A to B is 

U U  U  = −  
B r 

⋅ d r sΔ =  B − A ∫A 
F 

r 
•	 The electric potential difference ΔV between points A and B in an electric field E is 

given by 

rΔU B rV V  V  B − A =  = −  ∫ E sΔ =  ⋅  d 
q0 

A 

The quantity represents the amount of work done per unit charge to move a test 
charge q0  from point A to B, without changing its kinetic energy. 

•	 The electric potential due to a point charge Q  at a distance r away from the charge is 

1	 QV = 
4πε0 r 

For a collection of charges, using the superposition principle, the electric potential is 

1 QiV = ∑4πε0 i ri 

•	 The potential energy associated with two point charges q1  and q2 separated by a 
distance r12  is 

1 q qU = 1 2  

4πε0 r12  

•	 From the electric potential V , the electric field may be obtained by taking the 
gradient of V : 

r 
E = −∇V 
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In Cartesian coordinates, the components may be written as  

∂V ∂V ∂VEx = −  , Ey = −  , Ez = −∂x ∂y ∂z 

• The electric potential due to a continuous charge distribution is 

V = 
1 
∫ 

dq 
4πε0 r 

3.7 Problem-Solving Strategy: Calculating Electric Potential 

In this chapter, we showed how electric potential can be calculated for both the discrete 
and continuous charge distributions. Unlike electric field, electric potential is a scalar 
quantity. For the discrete distribution, we apply the superposition principle and sum over 
individual contributions: 

V ke ∑ qi= 
i ri 

For the continuous distribution, we must evaluate the integral 

V ke ∫ 
dq= 
r 

In analogy to the case of computing the electric field, we use the following steps to 
complete the integration: 

(1) Start with dV = ke 
dq . 
r 

(2) Rewrite the charge element dq as 

⎧λ dl           (length)
dq = ⎨

⎪σ dA          (area)
⎪⎩ρ dV          (volume) 

depending on whether the charge is distributed over a length, an area, or a volume.  

(3) Substitute dq into the expression for dV . 
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(4) Specify an appropriate coordinate system and express the differential element (dl, dA 
or dV ) and r  in terms of the coordinates (see Table 2.1.)  

(5) Rewrite dV  in terms of the integration variable. 

(6) Complete the integration to obtain V. 

r 
Using the result obtained for V , one may calculate the electric field by E = −∇V . 
Furthermore, the accuracy of the result can be readily checked by choosing a point P 
which lies sufficiently far away from the charge distribution. In this limit, if the charge 
distribution is of finite extent, the field should behave as if the distribution were a point 
charge, and falls off as 1/ r 2 . 

Below we illustrate how the above methodologies can be employed to compute the 
electric potential for a line of charge, a ring of charge and a uniformly charged disk. 
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3.8 Solved Problems 

Charged Rod Charged Ring Charged disk 

  Figure 

(2) Express dq in 
terms of charge 
density 

dq λ dx′= dq = λ dl dq =σ dA 

(3) Substitute dq 
into expression for 
dV 

e 
dxdV k 
r 

λ ′ 
= e 

dldV k 
r 
λ = e 

dAdV k 
r 

σ = 

(4) Rewrite r and the 
differential element 
in terms of the 
appropriate 
coordinates  

dx′ 

2 2r x y′= + 

dl R dφ′= 

2 2r R z= + 

2dA π r dr′ ′= 

2 2r r z′= + 

(5) Rewrite  dV 2  2  1/  2  ( )e 
dxdV k 

x y 
λ ′ 

= 
′ + 2  2  1/  2  ( )e 

R ddV k 
R z 
λ φ′ = 
+ 2  2  1/  2  

2 
( )e 

r dr  dV k 
r z 
πσ ′ ′  

= 
′ + 

(6) Integrate to get V 

/2  

2 2/2
0 

2 2 

2 2 
0 

4 

( /  2)  ( /  2)  
ln 

4 ( /  2)  ( /  2)  

dxV 
x y 

y 

y 

λ 
πε 

λ 
πε 

− 

′ 
= 

′ + 

⎡ ⎤+ + 
= ⎢ ⎥ 

⎢ ⎥− + +⎣ ⎦ 

∫
l 

l 

l l 

l l 

2  2  1/  2  

2 2 

2 2 

( ) 
(2 ) 

e 

e 

e 

RV k  d
R z 

Rk 
R z 

Qk 
R z 

λ φ 

π λ  

′= 
+ 

= 
+ 

= 
+ 

∫� 

( ) 
( ) 

2  2  1/2  0 

2 2 

2 2 
2 

2 
( ) 

2  |  |  

2 | |  

R 

e 

e 

e 

r dr  V k  
r z 

k z R z 

k Q  z R  z
R 

πσ 

πσ 

′ ′  
= 

′ + 

= + − 

= + − 

∫ 

Derive E from V 

2 2 
0 

/ 2  
2 ( /  2)  

y 
VE 
y 

y y 
λ 
πε 

∂= −  
∂ 

= 
+ 

l 

l 

2  2  3/  2  ( ) 
e 

z 
k Qz  VE 

z R z 
∂= −  =  
∂ + 2 2 2 

2 
| |  

e 
z 

k QV z zE 
z R z z R 

⎛ ⎞∂= −  =  −⎜ ⎟∂ +⎝ ⎠ 

Point-charge limit 
for E 2 

e 
y 

k QE y
y 

≈ � l 
2 

e 
z 

k QE z R 
z 

≈ � 2 
e 

z 
k QE z R 
z 

≈ � 
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3.8.1 Electric Potential Due to a System of Two Charges 

Consider a system of two charges shown in Figure 3.8.1.  

Figure 3.8.1 Electric dipole 

Find the electric potential at an arbitrary point on the x axis and make a plot. 

Solution: 

The electric potential can be found by the superposition principle. At a point on the x 
axis, we have 

V x( )  = 
1 q + 

1 (−q) = 
q 

⎢
⎡ 1 − 

1 
⎥
⎤ 

0 | πε0 x a  4 0 ⎣ − + ⎦4πε | x − a 4 | + | πε | x a  | | x a  | 

The above expression may be rewritten as 

V x( ) 1  1  = −
V0 x a  | /| /  −1|  x a  +1|  

where V0 = q / 4πε0a . The plot of the dimensionless electric potential as a function of x/a. 
is depicted in Figure 3.8.2. 

Figure 3.8.2 

As can be seen from the graph, ( ) x a/ = ±1 , where the charges are V x  diverges at 
located. 
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3.8.2 Electric Dipole Potential 

Consider an electric dipole along the y-axis, as shown in the Figure 3.8.3. Find the 
electric potential V at a point P in the x-y plane, and use V to derive the corresponding 
electric field. 

Figure 3.8.3 

By superposition principle, the potential at P is given by 

1 ⎛ q q  ⎞
V =∑Vi = ⎜ − ⎟ 

i 4πε0 ⎝ r+ r− ⎠ 

where r± 
2 = r2 + a2 m 2 cos  θ . If we take the limit where r � ara , then 

r 
1 1 

r ⎣
1+ (  / )  2 m a r  θ ⎤⎦

−1/ 2 
= 

1 
r 
⎡
⎢1− 

1
2 

a r 2 ± (  / ) cos  ⎤
⎥= ⎡ a r  2( / ) cos  ( / )  a r  θ +L


± ⎣ ⎦


and the dipole potential can be approximated as  

q ⎡
⎢1− 

1 (  / )  a r  2 + a r  θ −1+ 
1 a r  2 + ( /  ) cos  ⎤

⎥V = ( / ) cos  ( / )  a r  θ +L 
4πε0r ⎣ 2 2 ⎦ 

2 cos  θ p cos  θ 
r ⋅ ̂≈ 

q ⋅ a = 2 = 
p r  

2
4πε0r r 4πε0r 4πε0r


where p r = 2aq ĵ is the electric dipole moment. In spherical polar coordinates, the gradient 
operator is 

r ∂ 1 ∂ ˆ 1 ∂∇ =  r̂ + θ + φ̂ 
∂r r ∂θ r sinθ ∂φ 
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Since the potential is now a function of both r and θ , the electric field will have 
components along the r̂ and θ̂ directions. Using E 

r 
= −∇V , we have 

Er = −
∂V = 

p cosθ 
3 , Eθ = −  

1 ∂V = 
p sin θ 

3 , Eφ = 0 
∂r 2πε0r r ∂θ 4πε 0r 

3.8.3 Electric Potential of an Annulus 

Consider an annulus of uniform charge density σ , as shown in Figure 3.8.4. Find the 
electric potential at a point P along the symmetric axis. 

Figure 3.8.4 An annulus of uniform charge density. 

Solution: 

Consider a small differential element dA at a distance r away from point P. The amount 
of charge contained in dA is given by 

dq =σ dA =σ ( 'r d θ )dr ' 

Its contribution to the electric potential at P is 

1 dq 1 σ ' 'r dr d θdV = = 
2 24πε0 r 4πε0 r ' + z 

Integrating over the entire annulus, we obtain 

b 2π r dr d  ' '  θ 2πσ  b r ds  ' σ 2 2 2 2V = σ = = ⎡ b + z − a + z ⎤∫ ∫  ⎦4πε0 
a 0 r '2 + z2 4πε0 

∫a r '2 + z2 2ε0 
⎣ 

where we have made used of the integral 
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ds s 
∫ 2 2 

= s2 + z2 

s + z 

Notice that in the limit a → 0 and b → R , the potential becomes 

V = 
2 
σ
ε0 

⎡
⎣ R2 + z2 − | |⎤z ⎦ 

which coincides with the result of a non-conducting disk of radius R shown in Eq. 
(3.5.14). 

3.8.4 Charge Moving Near a Charged Wire 

A thin rod extends along the z-axis from z = − d  to z = d . The rod carries a positive 
charge Q  uniformly distributed along its length 2d  with charge density λ = / 2Q d  . 

(a) Calculate the electric potential at a point z > d along the z-axis. 

(b) What is the change in potential energy if an electron moves from z = 4d to z = 3d ? 

(c) If the electron started out at rest at the point z = 4d , what is its velocity at z = 3d ? 

Solutions: 

(a) For simplicity, let’s set the potential to be zero at infinity, V ( )∞ =  0 . Consider an 
infinitesimal charge element dq = λ dz′ located at a distance z '  along the z-axis. Its 
contribution to the electric potential at a point z > d  is 

λ dz ' dV = 
4 0 z z 'πε − 

Integrating over the entire length of the rod, we obtain 

( )  = 
λ
∫ 

z d  dz' = λ ln  ⎜
⎛ z + d 

⎟
⎞−

V z  
4πε0 

+ z − z' 4 0 ⎝ ⎠z d  πε z − d 

(b) Using the result derived in (a), the electrical potential at z = 4d  is 

λ 4 + λ 5 ⎞( = 4 )  = ln  ⎛ d d  
⎟
⎞ = ln  ⎜

⎛ 
⎟V z  d  ⎜4πε0 ⎝ 4d d  ⎠ 4πε0 3 ⎠− ⎝ 

Similarly, the electrical potential at z = 3d  is 
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3d d ⎞ λλ ⎛ +V z  d  ( = 3 )  = 
πε

ln  
⎝⎜ − ⎟ = 

4 
ln 2  

4	 0 3d d ⎠ πε0 

The electric potential difference between the two points is  

λ 6⎛ ⎞Δ = (z = 3 )  − (z = 4 )  = ln  ⎜ ⎟ > 0V V d V d  
4πε0 ⎝ ⎠5 

Using the fact that the electric potential difference ΔV is equal to the change in potential 
energy per unit charge, we have 

U q V  | |  λ 6e ⎛ ⎞Δ = Δ = −  ln ⎜ ⎟ < 0 
0 ⎝ ⎠4πε 5 

where q = − | | e is the charge of the electron.  

(c) If the electron starts out at rest at z = 4d then the change in kinetic energy is  

1 2KΔ =  mv 
2 f 

By conservation of energy, the change in kinetic energy is 

| |  λ 6K Δ =  
e ⎛ ⎞Δ = − U ln ⎜ ⎟ > 0 

4πε0 ⎝ ⎠5 

Thus, the magnitude of the velocity at z = 3d is 

2 |  |  λ 6e ⎛ ⎞  vf = ln ⎜ ⎟4πε0 m 5⎝ ⎠  

3.9 Conceptual Questions 

1.	 What is the difference between electric potential and electric potential energy? 

2.	 A uniform electric field is parallel to the x-axis.  In what direction can a charge be 
displaced in this field without any external work being done on the charge? 

3.	 Is it safe to stay in an automobile with a metal body during severe thunderstorm? 
Explain. 
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4.	 Why are equipotential surfaces always perpendicular to electric field lines? 

5.	 The electric field inside a hollow, uniformly charged sphere is zero.  Does this imply 
that the potential is zero inside the sphere? 
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