Module 02: Math Review

1

Module 02: Math Review: Outline

Vector Review (Dot, Cross Products) Review of 1D Calculus Scalar Functions in higher dimensions Vector Functions Differentials

Purpose: Provide conceptual framework NOT teach mechanics

Coordinate System

Coordinate system: used to describe the position of a point in space and consists of

- 1. An origin as the reference point
- 2. A set of coordinate axes with scales and labels
- 3. Choice of positive direction for each axis
- 4. Choice of unit vectors at each point in space

Cartesian Coordinate System

Vectors

Vector

A vector is a quantity that has both direction and magnitude. Let a vector be denoted by the symbol \vec{A} The magnitude of \vec{A} is denoted by $|\vec{\mathbf{A}}| = A$

Application of Vectors

(1) Vectors can exist at any point *P* in space.

(2) Vectors have direction and magnitude.

(3) Vector Equality: Any two vectors that have the same direction and magnitude are equal no matter where in space they are located.

Vector Addition

Let \vec{A} and \vec{B} be two vectors. Define a new vector $\vec{C} = \vec{A} + \vec{B}$, the "vector addition" of \vec{A} and \vec{B} by the geometric construction shown in either figure

Summary: Vector Properties

Addition of Vectors

- 1. Commutativity $\vec{A} + \vec{B} = \vec{B} + \vec{A}$
- 2. Associativity $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$
- 3. Identity Element for Vector Addition $\vec{0}$ such that $\vec{A} + \vec{0} = \vec{0} + \vec{A} = \vec{A}$
- 4. Inverse Element for Vector Addition $-\vec{A}$ such that $\vec{A} + (-\vec{A}) = \vec{0}$

Scalar Multiplication of Vectors

- 1. Associative Law for Scalar Multiplication
- 2. Distributive Law for Vector Addition
- 3. Distributive Law for Scalar Addition
- $b(c\vec{\mathbf{A}}) = (bc)\vec{\mathbf{A}} = (cb\vec{\mathbf{A}}) = c(b\vec{\mathbf{A}})$ $c(\vec{\mathbf{A}} + \vec{\mathbf{B}}) = c\vec{\mathbf{A}} + c\vec{\mathbf{B}}$ $(b+c)\vec{\mathbf{A}} = b\vec{\mathbf{A}} + c\vec{\mathbf{A}}$
- 4. Identity Element for Scalar Multiplication: number 1 such that $1 \vec{A} = \vec{A}$

Vector Decomposition

Choose a coordinate system with an origin and axes. We can decompose a vector into component vectors along each coordinate axis, for example along the x,y, and z-axes of a Cartesian coordinate system. A vector at P can be decomposed into the vector sum,

 $\vec{\mathbf{A}} = \vec{\mathbf{A}}_x + \vec{\mathbf{A}}_y + \vec{\mathbf{A}}_z$

Unit Vectors and Components

The idea of multiplication by real numbers allows us to define a set of unit vectors at each point in space $(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}})$ with $\hat{i} = 1, \hat{j} = 1, \hat{k} = 1$ Components: $\vec{\mathbf{A}} = (A_x, A_y, A_z)$

 $\vec{\mathbf{A}}_x = A_x \, \hat{\mathbf{i}}, \ \vec{\mathbf{A}}_y = A_y \, \hat{\mathbf{j}}, \qquad \vec{\mathbf{A}}_z = A_z \, \hat{\mathbf{k}}$

 $\vec{\mathbf{A}} = A_x \,\hat{\mathbf{i}} + A_y \,\hat{\mathbf{j}} + A_z \,\hat{\mathbf{k}}$

Vector Decomposition in Two Dimensions

Consider a vector $\vec{\mathbf{A}} = (A_x, A_y, 0)$ x- and y components: $A_x = A\cos(\theta), \quad A_y = A\sin(\theta)$ θ Magnitude: $A = \sqrt{A_x^2 + A_y^2}$ A_{χ} **Direction:** $\frac{A_y}{A_x} = \frac{A\sin(\theta)}{A\cos(\theta)} = \tan(\theta)$

$$\theta = \tan^{-1}(A_y / A_x)$$

Vector Addition

$$\mathbf{\vec{A}} = A\cos(\theta_A) \,\,\mathbf{\hat{i}} + A\sin(\theta_A) \,\,\mathbf{\hat{j}}$$

 $\vec{\mathbf{B}} = B\cos(\theta_B) \ \hat{\mathbf{i}} + B\sin(\theta_B) \ \hat{\mathbf{j}}$

Vector Sum: $\vec{C} = \vec{A} + \vec{B}$ Components

 $C_{x} = A_{x} + B_{x}, \quad C_{y} = A_{y} + B_{y}$ $C_{x} - C\cos(\theta_{C}) - A\cos(\theta_{A}) + B\cos(\theta_{B})$ $C_{y} = C\sin(\theta_{C}) = A\sin(\theta_{A}) + B\sin(\theta_{B})$ $\vec{\mathbf{C}} = (A_{x} + B_{x})\,\hat{\mathbf{i}} + (A_{y} + B_{y})\,\hat{\mathbf{j}} = C\cos(\theta_{C})\,\hat{\mathbf{i}} + C\sin(\theta_{C})\,\hat{\mathbf{j}}$

Preview: Vector Description of Motion

- Position $\vec{\mathbf{r}}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$
- **Displacement** $\Delta \vec{\mathbf{r}}(t) = \Delta x(t) \hat{\mathbf{i}} + \Delta y(t) \hat{\mathbf{j}}$
- Velocity $\vec{\mathbf{v}}(t) = \frac{dx(t)}{dt}\hat{\mathbf{i}} + \frac{dy(t)}{dt}\hat{\mathbf{j}} \equiv v_x(t)\hat{\mathbf{i}} + v_y(t)\hat{\mathbf{j}}$
- Acceleration $\vec{\mathbf{a}}(t) = \frac{dv_x(t)}{dt}\hat{\mathbf{i}} + \frac{dv_y(t)}{dt}\hat{\mathbf{j}} \equiv a_x(t)\hat{\mathbf{i}} + a_y(t)\hat{\mathbf{j}}$

Scalar Product

A scalar quantity

Magnitude:

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \left| \vec{\mathbf{A}} \right| \left| \vec{\mathbf{B}} \right| \cos \theta$$

The scalar (dot) product can be positive, zero, or negative

Two types of projections: the scalar product is the parallel component of one vector with respect to the second vector times the magnitude of the second vector

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \left| \vec{\mathbf{A}} \right| (\cos \theta) \left| \vec{\mathbf{B}} \right| = A_{\parallel} \left| \vec{\mathbf{B}} \right|$$

 $\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \left| \vec{\mathbf{A}} \right| (\cos \theta) \left| \vec{\mathbf{B}} \right| = \left| \vec{\mathbf{A}} \right| B_{\parallel}$

Scalar Product Properties

 $\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} - \vec{\mathbf{B}} \cdot \vec{\mathbf{A}}$ $c\vec{\mathbf{A}} \quad \vec{\mathbf{B}} - c(\vec{\mathbf{A}} \cdot \vec{\mathbf{B}})$ $(\vec{\mathbf{A}} + \vec{\mathbf{B}}) \cdot \vec{\mathbf{C}} = \vec{\mathbf{A}} \cdot \vec{\mathbf{C}} + \vec{\mathbf{B}} \cdot \vec{\mathbf{C}}$

Scalar Product in Cartesian Coordinates

With unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1 \qquad \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = |\hat{\mathbf{i}}| |\hat{\mathbf{i}}| \cos(0) = 1$$
$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = 0 \qquad \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = |\hat{\mathbf{i}}| |\hat{\mathbf{j}}| \cos(\pi/2) = 0$$

Example:

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}, \quad \vec{\mathbf{B}} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$$
$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = A_x B_x + A_y B_y + A_z B_z$$

Worked Example: Scalar Product

Given two vectors
$$\vec{A} = \hat{i} + \hat{j} - \hat{k}$$

 $\vec{B} - 2\hat{i} - \hat{j} + 3\hat{k}$

Find $\vec{A} \cdot \vec{B}$

Solution:

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = A_x B_x + A_y B_y + A_z B_z$$
$$= (1)(-2) + (1)(-1) + (-1)(3) = -6$$

Summary: Vector Product

Magnitude: equal to the area of the parallelogram defined by the two vectors

Direction: determined by the Right-Hand-Rule

Properties of Vector Products

 $\vec{\mathbf{A}} \times \vec{\mathbf{B}} = -\vec{\mathbf{B}} \times \vec{\mathbf{A}}$ $c(\vec{\mathbf{A}} \times \vec{\mathbf{B}}) = \vec{\mathbf{A}} \times c\vec{\mathbf{B}} = c\vec{\mathbf{A}} \times \vec{\mathbf{B}}$ $(\vec{\mathbf{A}} + \vec{\mathbf{B}}) \times \vec{\mathbf{C}} = \vec{\mathbf{A}} \times \vec{\mathbf{C}} + \vec{\mathbf{B}} \times \vec{\mathbf{C}}$

Vector Product of Unit Vectors

• Unit vectors in Cartesian coordinates $|\hat{\mathbf{i}} \times \hat{\mathbf{j}}| = |\hat{\mathbf{i}}||\hat{\mathbf{j}}|\sin(\pi/2) = 1$

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = |\hat{\mathbf{i}}| |\hat{\mathbf{j}}| \sin(0) = 0$$

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \qquad \hat{\mathbf{i}} \times \hat{\mathbf{i}} = \vec{\mathbf{0}}$$
$$\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}} \qquad \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \vec{\mathbf{0}}$$
$$\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \qquad \hat{\mathbf{k}} \times \hat{\mathbf{k}} = \vec{\mathbf{0}}$$

Components of Vector Product

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}, \quad \vec{\mathbf{B}} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$$
$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (A_y B_z - A_z B_y) \hat{\mathbf{i}} + (A_z B_x - A_x B_z) \hat{\mathbf{j}} + (A_x B_y - A_y B_x) \hat{\mathbf{k}}$$
$$= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Worked Example: Vector Product

Find a unit vector perpendicular to

$$\vec{\mathbf{A}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$$

and

$$\vec{\mathbf{B}} = -2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$$

One Variable Calculus

Review: 1D Calculus

• Think about scalar functions in 1D:

Think of this as height of mountain vs position

Derivatives

How does function change with position?

Rate of change of f at x = a?

• Approximate function? Use derivatives!

What is f(x) near x=0.35?

• Approximate function? Use derivatives!

What is f(x) near x=0.35? $T_0(x) = f(0.35)$

Red curve is our approximation to f(x) near x=0.35 using one term in the Taylor series

• Approximate function? Use derivatives!

What is f(x) near x=0.35? $T_1(x) = f(0.35)$ + f'(0.35)(x - 0.35)

Red curve is our approximation to f(x) near x=0.35 using two terms in the Taylor series

• Approximate function? Use derivatives!

Red curve is our approximation to f(x) near x=0.35 using three terms in the Taylor series

• Approximate function? Use derivatives!

What is f(x) near x=0.35? $T_{10}(x) = f(0.35)$ + f'(0.35)(x-0.35) $+ \frac{1}{2} f''(0.35)(x-0.35)^2$

+ eleven more terms!

Red curve is our approximation to f(x) near x=0.35 using 11 terms in the Taylor series

In general
$$T_N(x) = \sum_{n=0}^N \frac{(x-a)^n}{n!} \frac{d^n f}{dx^n}\Big|_{x=a}$$

Taylor Series Most Commonly Used Only to 1st Order

Most Common: 1st Order $T_1(x) = f(a) + f'(a)(x-a)$

 For hints as to when to use Taylor, look for "approximate" or "when x is small" or "small angle" or "close to" ...

Integration

Geometry: Find Area

Also: Sum Contributions

Move to More Dimensions

We'll start in 2D

Scalar Functions in 2D

• Function is height of mountain:

Partial Derivatives

Gradient

What is fastest way up the mountain?

Gradient

Gradient tells you direction to move:

Line Integral

Sum function while walking under surface along given curve

Just like 1D integral, except now not just along x

N-D Integration in General Now think "contribution" from each piece Find area of surface? dASurface Volume of object? $\iint_{Object} dV$ Mass
Mass
of object? $\iint_{Object} dM = \iiint_{\rho} dV$ Mass Density **Object** *Object*

IDEA: Break object into small pieces, visit each, asking "What is contribution?"

You Now Know It All

Small Extension to Vector Functions

Can't Easily Draw Multidimensional Vector Functions

In 2D various representations:

"Grass Seeds" / "Iron Filings"

Vector Field Diagram

Integrating Vector Functions

Two types of questions generally asked:

- 1) Integral of vector function yielding vector
- Ex.: Mass Distribution $\vec{\mathbf{g}} = -G \iiint_{object} \frac{dM}{r^2} \hat{\mathbf{r}}$
- IDEA: Use Components Just like scalar $\iint \vec{\mathbf{F}}(\vec{\mathbf{r}}) dA =$

$$\hat{\mathbf{i}} \iint F_x(\vec{\mathbf{r}}) dA + \hat{\mathbf{j}} \iint F_y(\vec{\mathbf{r}}) dA + \hat{\mathbf{k}} \iint F_z(\vec{\mathbf{r}}) dA$$

Integrating Vector Functions

Two types of questions generally asked:

2) Integral of vector function yielding scalar

Line Integral Ex.: Work $W - \int_{Curve} \vec{\mathbf{F}} \cdot d\vec{\mathbf{s}}$

IDEA: While walking along the curve how much of the function lies *along* our path

Integrating Vector Functions One last example: Flux

Arc Length on Circle

One Important Geometry Fact: Relation between arc length on circle and included angle

Differentials

Rectangular Coordinates

Differentials

Cylindrical Coordinates

$$dV - \rho d\varphi \, d\rho \, dz$$
$$dA = \rho d\varphi \, dz$$
$$dA = \rho d\varphi \, d\rho$$
$$dA = d\rho \, dz$$

Draw picture and think!

Differentials $r\sin\theta$ **Spherical Coordinates** $r\sin\theta d\Phi$ $dV - r\sin\theta d\phi \ rd\theta \ dr$ $rd\theta$ $dA = r\sin\theta d\varphi \ rd\theta$ Draw picture and think!

Electricity and Magnetism: Math Review

Vectors:

Dot Product: How parallel? Cross Product: How perpendicular? Derivatives:

Rate of change (slope) of function Gradient tells you how to go up fast Integrals:

Visit each piece and ask contribution

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.