Module 02: Math Review



Module 02: Math Review: Outline

Vector Review (Dot, Cross Products)
Review of 1D Calculus

Scalar Functions In higher dimensions
Vector Functions

Differentials

Purpose: Provide conceptual
framework NOT teach mechanics



Coordinate System

Coordinate system: used to describe the position
of a point in space and consists of

An origin as the z
reference point

A set of coordinate

axes with scales and * (% )y 2)
labels
Choice of positive --e Y

direction for each axis

Choice of unit vectors X

at each point in space . :
P P Cartesian Coordinate System



Vectors



Vector

A vector Is a quantity
that has both
direction and
magnitude. Let a
vector be denoted by
the symbol A

The magnitude of A v
is denoted by |A|= A




Application of Vectors

(1) Vectors can exist at any point P in space.
(2) Vectors have direction and magnitude.

(3) Vector Equality: Any two vectors that have the
same direction and magnitude are equal no matter
where in space they are located.



Vector Addition

Let A and B be two vectors. Define a
new vector C=A+B  the “vector

addition” of A and B by the geometric
construction shown in either figure




Summary: Vector Properties

Addition of Vectors

1. Commutativity A + é = |§ + A

2. Associativity (A+B)+C=A+(B+C)

3. Identity Element for Vector Addition () suchthat A +0=0+A = A
4. Inverse Element for Vector Addition —A such that A + (— A ) = 6

Scalar Multiplication of Vectors

1. Associative Law for Scalar Multiplication b (CA) — (bC)A — (Cb A) =C (bA)

2. Distributive Law for Vector Addition C (A 4 |§) =C ,5\ +C |§

3.  Distributive Law for Scalar Addition (b+c)A=bA+cA

—

4, Identity Element for Scalar Multiplication: number 1 suchthat 1 A=A



Vector Decomposition

Choose a coordinate system
with an origin and axes. We
can decompose a vector y
Into component vectors
along each coordinate axis,
for example along the x,y,

A|=[Ay +4)+ 47—

and z-axes of a Cartesian
coordinate system. A vector
at P can be decomposed
Into the vector sum,




Unit Vectors and Components

The idea of
multiplication by real
numbers allows us to
define a set of unit
vectors at each point

AN AN AN

In space (i, j, k)

A|=[Ay +4)+ 47—

with [il=1,|j=1, |k =1
Components

A= (A<AyAz)

—_— —_—

A, = -A ) A=Ak A=Ai+A j+AK




Vector Decomposition in Two
Dimensions
Consider a vector
A=(A A0
X- and y components:
A, =Acos(d), A, =Asin(0)
Magnitude: A=A+ A

A, Asin(6)
A, Acos(6)

X

Direction: = tan(9)

f=tan" (A / A)



Vector Addition

i i A y
A = Acos(d,) 1+ Asin(4,) ]

B = Bcos(4,) i+ Bsin(HB)]

Vector Sum: C=A+B
Components
C=A+B, C=A+B
X X X y y y
C, — Ccos(6.)— Acos(6,)+ Bcos(6;)
C, =Csin(6.) = Asin(d,) + Bsin(d;)
C=(A +B,)i+(A +B,)j=Ccos(d,)i+Csind,)




Preview: Vector Description of
Motion

e PoSition  F(t) = x(t)i + y(t)]

e Displacement  AF(t) = Ax(t)i +Ay(t) j

dx(t) - dy(t)

e Velocity  v(t) =

» Acceleration 5(t) = 3% t(t)A d()A




o~

Scalar Product

A scalar quantity

Magnitude: A-B =|A||B|cos®

The scalar (dot) product can be positive, zero, or negative

Two types of projections: the scalar product is the parallel
component of one vector with respect to the second vector

times the magnitude of the second vector
B

B

. 0

o o -

A b / A
Bcosg

A-B= ‘A‘(cos 19)‘13‘ =4 ‘ﬁ‘ A-B= ‘;&‘(cos 9)‘]§‘ = ‘Z&‘BH

MY



Scalar Product Properties



Scalar Product in Cartesian
Coordinates

With unit vectors i, j and k

i i:j j lA{ lA{:1 i-i:|i||i|cos(0):1
Gioik=j koo Uilillleos(z2)=0
Example:

A=4i+4j+4k, B=Bi+Bj+Bk

A-B=AB +AB, +AB




Worked Example: Scalar

Product
Given two vectors A =i+ j—K
B——2i—j+3K
Find A-B
Solution:

A-B=AB,+AB +AB,
- (O(-2)+ Q-1+ (-D(@) =6



Summary: Vector Product

Magnitude: equal to the area of the parallelogram defined by
the two vectors

‘Ax é‘ = W ‘é‘ sin@ = ‘A‘(‘é‘ sin 6’) ~ (‘A‘ sin 6’)‘@‘ (0<6<7)

A
A
AXB
\
Direction: determined by ) %j\\
the Right-Hand-Rule 2 E—




Properties of Vector Products

AxB=-BxA
c(AxB)=AxcB=cAxB
(A+B)xC=AxC+BxC



Vector Product of Unit Vectors

 Unit vectors In Carte3|an Coordlnates
ixj|=i]j|sin(7/2)=1

ixi|=i||j|sin(0)=0

ixj=k ixi=0
jxk=i jxj=0
kxi=j kxk=0




Components of Vector Product

—

A=Ai+Aj+Ak, B=Bi+B j+Bk

AxB=(AB,-AB)i+(AB ~AB,)j+(AB,—AB)k
] K
A A A
B, B, B,

y




Worked Example: Vector
Product

Find a unit vector perpendicular to

—_ N\

A:?+]—k
and

B=-2i—j+3K



One Variable Calculus



Review: 1D Calculus

e Think about scalar functions in 1D:

T(x)

X

Think of this as height of mountain vs position

24



Derivatives

How does function change with position?

X=a X
Rate of change of fatx=a?



By the way... Taylor Series

e Approximate function? Use derivatives!

!A
o
" ]
' T

What is f(x) near x=0.357

sin(27nXx)

oS
o
—

=
[

1(x)




By the way... Taylor Series

o Approximate function? Use derivatives!

What is f(x) near x=0.357
T,(x)= 1(0.35)

!_\
o
n l
v T

sin(2mX)

O .
o
n 1
v )

O
&

1(x)

000 025 050 0.75 'Xl.oo

Red curve Is our approximation to f(x) near
X=0.35 using one term In the Taylor series

27



By the way... Taylor Series

o Approximate function? Use derivatives!

sin(27nXx)

1(x)

!A
o
n l
' T

What is f(x) near x=0.357
T.(x) = (0.35)

+ £'(0.35)(x - 0.35)

O
o1
l
1

o
o

=
[

!_\

(@)
p 1 " 1 "
T v T v

Red curve Is our approximation to f(x) near
Xx=0.35 using two terms in the Taylor series

28



By the way... Taylor Series

o Approximate function? Use derivatives!

sin(27nXx)

1(x)

!A
o
n l
' T

What is f(x) near x=0.357
T (x)= 1(0.35)

+ £'(0.35)(x - 0.35)

O
o1
l
1

o
o

=
[

!_\

(@)
1 " 1 "
T v T v

e 4 1§7(0.35) (x— 0.35)

Red curve Is our approximation to f(x) near
X=0.35 using three terms in the Taylor series

29



By the way... Taylor Series
o Approximate function? Use derivatives!

< I
o

I [

v )

sin(2mx)

O
o

\a (0

O
&

!_\

o
l n l n
T v T v

1(x)

000 025 050 075 'Xl.oo

What Is f(x) near x=0.357
T,,(x) = 1(0.35)

+ f '(O.35)(x—0.35)
+1£"(0.35)(x-0.35)’
+ eleven more terms!

Red curve Is our approximation to f(x) near
X=0.35 using 11 terms In the Taylor series

In general T (X) = Z

)df
dx"

30



Taylor Series Most Commonly
Used Only to 1st Order

101 Most Common: 1St Order
& os!

= T.(x) = f(a)+

[ |

3’5 f'(a) (X — a)

e For hints as to when to use Taylor, look for
“approximate” or “when x Is small” or “small
angle” or “close to” ...

31



Integration

Sum function while walking along axis

f(x) jf(x)dx:?

X =a X=p X

Geometry: Find Area Also: Sum Contributions

32



Move to More Dimensions

We'll start in 2D

33



Scalar Functions in 2D

34



Partial Derivatives

How does functlon change Wlth position?

35



Gradient

What Is fastest way up the mountain?

36



Gradient

Gradient tells you direction to move:
- 6X8y 0z




Line Integral
Sum function while walking under surface

Just like 1D integral, &Xcept now not just along x =



2D Integration

Surface

Just Geometry: Finding Volume Under Surface

39



N-D Integration in General

Now think “contribution” from each piece

Find area of surface? _[ _f dA

Surface

Volume of object? ” dVv Macs Deneit
ass Density

Object /

Mass of object? Hj dM = _m podV

Object Object

IDEA: Break object into small pieces, visit
each, asking “What is contribution?”

40



You Now Know It All

O
Jud
-
@

V)
-
&)

N\
v’

LL]

©

V)

Vector Functions

41



Can’t Easily Draw Multidimensional
Vector Functions
In 2D various representations:

“Grass Seeds” / “Iron Filings”

Vector Field Diagram

42



Integrating Vector Functions
Two types of questions generally asked:

1) Integral of vector function yielding vector
dM .
iz

Ex.: Mass Distribution ¢=-G m

object

IDEA: Use Components - Just like scalar

Hﬁ@mA:
|” FX(F)dA+]” F (F)dA+ k” F. (F)dA

43



Integrating Vector Functions
Two types of questions generally asked:

2) Integral of vector function yielding scalar

Line Integral Ex.: Work W —L F-ds

IDEA: While walking along the curve how
much of the function lies along our path

44



Integrating Vector Functions
One last example: Flux

Q: How much does field E penetrate the surface?
Area=A A

Tiqnxmd

) \;
\\

A'=AcosO

Flux @ ”

Surface 45



Arc Length on Circle

One Important Geometry Fact:

Relation between arc length on circle
and included angle

46



Differentials

Rectangular Coordinates

4

dV — dxdydz J
y
dA = dx dy “ il
dA = dxdz - (x32) dz
dA =dy dz -

Draw picture and thiy

X



Differentials

Cylindrical Coordinates

Z

dV — pdp dp dz

dA = pde dz
dA= pde dp
dA=dp dz

Draw picture and think!

//« |
K\\MD
S e

"

S

'-h"'h—-—._._‘____-_'_._.,—-r"""_'_

48



Differential§

Spherical Coordinates

dV —rsinfde rdé dr

dA=rsindde rdé /\

Draw picture and think!




Electricity and Magnetism: Math
Review

Vectors:

Dot Product. How parallel?

Cross Product: How perpendicular?
Derivatives:

Rate of change (slope) of function

Gradient tells you how to go up fast
Integrals:

Visit each piece and ask contribution

50
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