Module 02: Math Review

1

Module 02: Math Review: Outline

Vector Review (Dot, Cross Products) Review of 1D Calculus Scalar Functions in higher dimensions Vector Functions **Differentials**

Purpose: Provide conceptual framework NOT teach mechanics

Coordinate System

Coordinate system: used to describe the position of a point in space and consists of

- 1. An origin as the reference point
- 2. A set of coordinate axes with scales and labels
- 3. Choice of positive direction for each axis
- 4. Choice of unit vectors

at each point in space **Cartesian Coordinate System**

Vectors

Vector

 \rightarrow A vector is a quantity that has both direction and magnitude. Let a vector be denoted by the symbol $\vec{\mathbf{A}}$ The magnitude of **A** \rightarrow is denoted by \mid A \mid \equiv A

Application of Vectors

(1) Vectors can exist at any point *P* in space.

(2) Vectors have direction and magnitude.

 (3) Vector Equality: Any two vectors that have the same direction and magnitude are equal no matter where in space they are located.

Vector Addition

A B \vec{r} \vec{r} Let A and B be two vectors. Define a new vector $C = A + B$, the "vector"

addition" of \vec{A} and \vec{B} by the geome addition" of \vec{A} and \vec{B} by the geometric construction shown in either figure De two
 \vec{z} \vec{z} \vec{z} a
Bhown in

Summary: Vector Properties

Addition of Vectors

- 1. Commutativity $\vec{\mathbf{A}} + \vec{\mathbf{B}} = \vec{\mathbf{B}} + \vec{\mathbf{A}}$
- $({\vec A} + {\vec B}) + {\vec C} = {\vec A} + ({\vec B} + {\vec C})$ 2. Associativity $+{\bf B}$) + **C** = ${\bf A}$ + (**B** +
- 3. Identity Element for Vector Addition $\vec{\mathbf{0}}$ such that $\vec{A} + \vec{0} = \vec{0} + \vec{A} = \vec{A}$
- **4. C** Inverse Element for Vector Addition $-\vec{\textbf{A}}$ such that $\vec{\textbf{A}} + \left(-\vec{\textbf{A}}\right) = \vec{\textbf{0}}$

Scalar Multiplication of Vectors

- 1. Associative Law for Scalar Multiplication $b(c\vec{A}) = (bc)\vec{A} = (cb\vec{A}) = c(b\vec{A})$
- 2. Distributive Law for Vector Addition
- 3. Distributive Law for Scalar Addition
- $(b+c)\vec{A} = b\vec{A} + c\vec{A}$ $c(\vec{\mathbf{A}} + \vec{\mathbf{B}}) = c\vec{\mathbf{A}} + c\vec{\mathbf{B}}$
- 4. Identity Element for Scalar Multiplication: number 1 such that $1\vec{A} = \vec{A}$

Vector Decomposition

Choose a coordinate system with an origin and axes. We can decompose a vector into component vectors along each coordinate axis, for example along the x,y , and z-axes of a Cartesian coordinate system. A vector at *P* can be decomposed into the vector sum,

 $A = A_+ + A_+ + A_ \rightarrow$ G \rightarrow G \rightarrow G \rightarrow $=$ \mathbf{A}_x *y z*

Unit Vectors and Com ponents

The idea of multiplication by real numbers allows us to define a set of unit vectors at each point i n space \hat{i} , \hat{j} , \hat{k}) ${\bf with} \quad |\hat{\bf i}| = 1, |\hat{\bf j}| = 1, |\hat{\bf k}| = 1$ **i j** *, ,* **k** Components: $/$ \mathbf{i} $\mathbf{=}$ \mathbf{i} $= 1, 1 \neq j = 1, 2k \neq j$ $(A_{_{\chi}},A_{_{\chi}},A_{_{\chi}})$ ${\bf A} =$ $=(A_{r}, A_{v}, A_{r})$ \rightarrow

 $\vec{A}_x = A_x \hat{i}$, $\vec{A}_y = A_y \hat{i}$, $\vec{A}_z = A_z$ *ˆ***i**, $\mathbf{A}_y = A_y$ **j**, $\mathbf{A}_z = A_z$ **k** \rightarrow \rightarrow \rightarrow \rightarrow $A_x = A_x I$, $A_y = A_y J$, $A_z = A_z$

 $\vec{A} = A_{\alpha} \hat{i} + A_{\alpha} \hat{j} + A_{\beta}$ *ˆ* $\mathbf{i} + A_{\nu} \mathbf{j} + A_{\nu} \mathbf{k}$ \rightarrow $A \equiv A_{x}$ $+A_{y}$ $+$ $A_{\overline z}$

Vector Decomposition in Two Dimensions

Consider a vector \mathcal{Y} $\vec{A} = (A_x, A_y, 0)$ x- and y components: $A_x = A \cos(\theta), \quad A_y = A \sin(\theta)$ θ Magnitude: $A = \sqrt{A_x^2}$ gnitude: $A = \sqrt{A_x^2 + A_y^2}$ $^{2}+A^{2}$ A_{x} **Direction:** $\frac{A_y}{A_x} = \frac{A\sin(\theta)}{A\cos(\theta)} = \tan(\theta)$

$$
\theta = \tan^{-1}(A_y / A_x)
$$

Vector Addition

$$
\vec{\mathbf{A}} = A\cos(\theta_A) \hat{\mathbf{i}} + A\sin(\theta_A) \hat{\mathbf{j}}
$$

 $\vec{\mathbf{B}} = B \cos(\theta_B)$ ˆ $\mathbf{i} + B\sin(\theta_B)$ ˆ $(\theta_{_R})$ **i** + B sin($\theta_{_R}$) **j**

 $\vec{C} = \vec{A} + \vec{B}$ **Components**

 C_x – $C \cos(\theta_C)$ – $A \cos(\theta_A) + B \cos(\theta_B)$ *C x* $= A$ *x* + *B* $C_y = A_y + B_y$ $C_v = C \sin(\theta_c) = A \sin(\theta_A) + B \sin(\theta_B)$ $\vec{C} = (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j} = C \cos(\theta_c) \hat{i} + C \sin(\theta_c) \hat{j}$

Preview: Vector Description of M t oion

- Position $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$ $\vec{\mathbf{r}}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$
- Displacement $\Delta \vec{r}(t) = \Delta x(t) \hat{i} + \Delta y(t) \hat{j}$ $\Delta \vec{r}(t) = \Delta x(t) \mathbf{i} + \Delta y(t) \mathbf{j}$
- Velocity $\vec{v}(t) = \frac{dx(t)}{dt}\hat{i} + \frac{dy(t)}{dt}\hat{j} = v_x(t)\hat{i}$ ˆ $\mathbf{u}(t) = \frac{dx(t)}{dt}\mathbf{\hat{i}} + \frac{dy(t)}{dt}\mathbf{\hat{j}} = v_x(t)\mathbf{\hat{i}} + v_y(t)$ dt dt $\vec{v}(t) = \frac{\sin(\theta)}{t} \hat{i} + \frac{\sin(\theta)}{t} \hat{j}$ $\vec{v}(t) = \frac{d\vec{v}(t)}{dt} \mathbf{i} + \frac{d\vec{v}(t)}{dt} \mathbf{j} = v_x(t) \mathbf{i} + v_y(t) \mathbf{j}$
- Acceleration $\vec{a}(t) = \frac{dv_x(t)}{\hat{i} + \frac{dv_y(t)}{\hat{j}}} = a(t)\hat{i}$. ˆ• Acceleration $\vec{a}(t) = \frac{dv_x(t)}{dt} \hat{i} + \frac{dv_y(t)}{dt} \hat{i} = a(t)\hat{i} + a(t)$ $g(t) = \frac{av_x(t)}{dt}$ **i** + $\frac{y(t)}{dt}$ **j** = $a_x(t)$ **i** + $a_y(t)$ $x \rightarrow \cdots$ *y* $f(t) \sim \frac{dV_v(t)}{dt}$ $t = \frac{1}{\sqrt{2}}$ **i** $+ \frac{1}{\sqrt{2}}$ **i** $\equiv a \cdot (t)$ **i** $+ a \cdot (t)$ *dt dt* $\vec{a}(t) = \frac{a \cdot r_x(t)}{1} \hat{i} + \frac{y(t)}{1} \hat{j} = a_x(t) \hat{i} + a_y(t) \hat{j}$

Scalar Product

A scalar quantity

Magnitude:

$$
\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = |\vec{\mathbf{A}}| |\vec{\mathbf{B}}| \cos \theta
$$

The scalar (dot) product can be positive, zero, or negative

Two types of projections: the scalar product is the parallel component of one vector with respect to the second vector times the magnitude of the second vector

$$
\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = |\vec{\mathbf{A}}|(\cos \theta) |\vec{\mathbf{B}}| = A_{\parallel} |\vec{\mathbf{B}}|
$$

 $\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = |\vec{\mathbf{A}}| (\cos \theta) |\vec{\mathbf{B}}| = |\vec{\mathbf{A}}| B_{\parallel}$ \vec{r} \vec{r} $\begin{bmatrix} \vec{r} \end{bmatrix}$ $\begin{bmatrix} \vec{r} \end{bmatrix}$ $\begin{bmatrix} \vec{r} \end{bmatrix}$

Scalar Product Properties

 $\bf{A}\cdot\bf{B}-\bf{B}\cdot\bf{A}$ $c\mathbf{A} \cdot \mathbf{B} = c(\mathbf{A} \cdot \mathbf{B})$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $c(\mathbf{A} \cdot \mathbf{B})$ $(A + B) \cdot C = A \cdot C + B \cdot C$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \bullet $= \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$

Scalar Product in Cartesian Coordinates

With unit vectors **i**, **j** and \hat{i} . \hat{i} and \hat{k} **ij k**

$$
\begin{vmatrix}\n\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1 \\
\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = 0\n\end{vmatrix}
$$
\n
$$
\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = |\hat{\mathbf{i}}||\hat{\mathbf{j}}|\cos(\pi/2) = 0
$$
\n
$$
\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = |\hat{\mathbf{i}}||\hat{\mathbf{j}}|\cos(\pi/2) = 0
$$

Example:

$$
\vec{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}, \quad \vec{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}
$$

$$
\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z
$$

Worked Example: Scalar Product

Given two vectors
$$
\vec{A} = \hat{i} + \hat{j} - \hat{k}
$$

$$
\vec{B} = -2\hat{i} - \hat{j} + 3\hat{k}
$$

 $\boldsymbol{\mathsf{Find}}\boldsymbol{\mathsf{A}}\boldsymbol{\cdot}\boldsymbol{\mathsf{B}}$ \longrightarrow \longrightarrow \bullet

Solution:

$$
\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z
$$

= (1)(-2) + (1)(-1) + (-1)(3) = -6

Summary: Vector Product

Magnitude: equal to the area of the parallelogram defined by the two vectors

Direction: determined by the Right-Hand-Rule

Properties of Vector Products

 $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$ \rightarrow \rightarrow \rightarrow \rightarrow $c(\mathbf{A} \times \mathbf{B}) = \mathbf{A} \times c\mathbf{B} = c\mathbf{A} \times \mathbf{B}$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $(A + B) \times C = A \times C + B \times C$

Vector Product of Unit Vectors

• Unit vectors in Cartesian coordinates $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = |\hat{\mathbf{i}}| |\hat{\mathbf{j}}| \sin(\pi/2) = 1$

$$
\hat{\mathbf{i}} \times \hat{\mathbf{i}} = |\hat{\mathbf{i}}| |\hat{\mathbf{j}}| \sin(0) = 0
$$

$$
\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \quad \hat{\mathbf{i}} \times \hat{\mathbf{i}} = \vec{\mathbf{0}}
$$

$$
\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}} \quad \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \vec{\mathbf{0}}
$$

$$
\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \quad \hat{\mathbf{k}} \times \hat{\mathbf{k}} = \vec{\mathbf{0}}
$$

Components of Vector Product

$$
\vec{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}, \quad \vec{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}
$$
\n
$$
\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{\mathbf{i}} + (A_z B_x - A_x B_z) \hat{\mathbf{j}} + (A_x B_y - A_y B_x) \hat{\mathbf{k}}
$$
\n
$$
= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}
$$

Worked Example: Vector Product

Find a unit vector perpendicular to

$$
\vec{A} = \hat{i} + \hat{j} - \hat{k}
$$

and

$$
\vec{\mathbf{B}} = -2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 3\hat{\mathbf{k}}
$$

.

One Variable Calculus

Review: 1D Calculus

• Think about scalar functions in 1D:

Think of this as height of mountain vs position

Derivatives

How does function change with position?

Rate of change of f at $x = a$?

• Approximate function? Use derivatives!

What is $f(x)$ near $x=0.35$?

• Approximate function? Use derivatives Approximate function? Use derivatives!

 $\begin{array}{c|c|c|c|c|c|c|c|c} \hline \end{array}$ What is f(x) near x=0.35? $T_0(x) = f(0.35)$

Red curve is our approximation to f(x) near x=0.35 using one term in the Taylor series

• Approximate function? Use derivatives Approximate function? Use derivatives!

What is f(x) near x=0.35? $\,$ $T_1(x) = f(0.35)$ f(x)=si ⁺ *^f*'(0.35) (*^x*[−] 0.35)

Red curve is our approximation to f(x) near x=0.35 using two terms in the Taylor series

• Approximate function? Use derivatives Approximate function? Use derivatives!

Red curve is our approximation to f(x) near x=0.35 using three terms in the Taylor series

• Approximate function? Use derivatives!

 $f(0.35)$ What is $f(x)$ near $x=0.35$? $(x - 0.35)$ 2 + *f* '(0.3 5) *x* − -0.35 $(x - 0.35)^2$ $1 f''(0.25) / \sim 0.25$ $+\frac{1}{2}f''(0.35)(x-0.35)$ −

+ eleven more terms!

Red curve is our approximation to f(x) near x=0.35 using 11 terms in the Taylor series

In general
$$
T_N(x) = \sum_{n=0}^N \frac{(x-a)^n}{n!} \frac{d^n f}{dx^n}\Big|_{x=a}
$$

Taylor Series Most Commonly Used Only to 1st Order

Most Common: 1st Order $f\,{}^{\prime\prime\!}(a)$ $(x-a)$ $-a$

• For hints as to when to use Taylor, look for "approximate" or "when x is small" or "small angle" or "close to" ...

Integration

Geometry: Find Area Also: Sum Contributions

Move to More Dimensions

We 'll start in 2D

Scalar Functions in 2D

· Function is height of mountain:

Partial Derivatives

Gradient

What is fastest way up the mountain?

Gradient

Gradient tells you direction to move:

Line Integral

Sum function while walking under surface along given curve

Just like 1D integral, \overleftrightarrow{ex} cept now not just along x $\overline{38}$

N-D Integration in General Now think "contribution" from each piece *dA*Find area of surface? *Surface dV* ∫∫∫ Volume of object? *dV Object* Volume of object? $\iiint dV$ Mass Density Mass of object? *dM <u>Object</u>* $\iiint dM = \iiint \rho dV$ *Object Object*

IDEA: Break object into small pieces, visit each, asking "What is contribution?"

You Now Know It All

Small Extension to **Vector Functions**

Can't Easily Draw Multidimensional Vector Functions

In 2D various representations:

"Grass Seeds" / "Iron Filings"

Vector Field Diagram

Integrating Vector Functions

Two types of questions generally asked:

- 1) Integral of vector function yielding vector
- Ex : Mass Distribution Ex.: Mass Distribution $\vec{\bf g} = - G \iiint \frac{dN}{r^2}$

$$
\vec{\mathbf{g}} = -G \iiint\limits_{object} \frac{dM}{r^2} \hat{\mathbf{r}}
$$

IDEA: Use Components - Just like scalar $\iint \vec{F}(\vec{r}) dA =$

$$
\hat{\mathbf{i}} \iint F_x(\vec{\mathbf{r}}) dA + \hat{\mathbf{j}} \iint F_y(\vec{\mathbf{r}}) dA + \hat{\mathbf{k}} \iint F_z(\vec{\mathbf{r}}) dA
$$

Integrating Vector Functions

Two types of questions generally asked:

2) Integral of vector function yielding scalar

Line Integral Ex.: Work $-W - \begin{bmatrix} & \mathbf{F} \end{bmatrix}$ $\bm{\mathsf{E}}$ x.: Work $W-\int_{\mathit{Curve}}\vec{\mathbf{F}}\cdot d\vec{\mathbf{s}}$

IDEA: While walking along the curve how much of the function lies *along* our path

Integrating Vector Functions One last example: Flux

Arc Length on Circle

One Important Geometry Fact: Relation between arc length on circle and included angle

Differentials

Rectangular Coordinates

Differentials

Cylindrical Coordinates

$$
dV - \rho d\varphi \, d\rho \, dz
$$

\n
$$
dA = \rho d\varphi \, dz
$$

\n
$$
dA = \rho d\varphi \, d\rho
$$

\n
$$
dA = d\rho \, dz
$$

Draw picture and think!

Electricity and Magnetism: Math Review

Vectors: Vectors:

Dot Product: How parallel? Cross Product: How perpendicular? Derivatives:

Rate of change (slope) of function Gradient tells you how to go up fast Integrals:

Visit each piece and ask contribution

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.