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Module 02: Math Review: Outline 

Vector Review (Dot Cross Products) Vector Review (Dot, Cross Products) 
Review of 1D Calculus 
Scalar Functions in higher dimensions 
Vector Functions 
DifferentialsDifferentials 

Purpose: Provide conceptualPurpose: Provide conceptual 
framework NOT teach mechanics 
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Coordinate SystemCoordinate System 
Coordinate system: used to describe the positiony p 
of a point in space and consists of 

1. An origin as the 
reference pointreference point 

2. A set of coordinate 
axes with scales andaxes with scales and 
labels 

3. Choice of positive 3. Choice of positive 
direction for each axis 

4. Choice of unit vectors 
at each point in space 

Cartesian Coordinate System 



Vectors 



G

Vector 

A vector is a quantityA vector is a quantity 
that has both 
direction and 
magnitude. Let a g
vector be denoted by 
the symbol A 

G 
the symbol
The magnitude of A 

G A 

G 
is denoted by | A≡A |



Application of Vectorspp
(1) Vectors can exist at any point P in space(1) Vectors can exist at any point P in space. 

(2) Vectors have direction and magnitude(2) Vectors have direction and magnitude. 

(3) Vector Equality: Any two vectors that have the(3) Vector Equality: Any two vectors that have the 
same direction and magnitude are equal no matter 
where in space they are located. p y 



Vector Addition

A BLet     and      be two vectors. Define a 
new vector                     ,the “vector 
addition” of  and      by the geometric 
construction shown in either figure

C A B
A B



        

Summary: Vector Propertiesy p 
Addition of Vectors 

1. Commutativity + = +A B B A  
G GG G 

( ) ( )A B  C A  B C  
G G  G  GG G 

2. Associativity 

3. Identity Element for Vector Addition       such that 

( ) ( )+ + = +  +A B  C A  B C  

0 
G 

+ = +  =A 0 0 A  A  
G G G G  G  

4. Inverse Element for Vector Addition  such that 

Scalar Multiplication of Vectors 

−A 
G ( )+ −  =A  A  0  

G G  G  

Scalar Multiplication of Vectors 

1. Associative Law for Scalar Multiplication ( ) ( )  (  )  ( )b c  bc  cb  c b= = =A A A A 
G G G G 

2. Distributive Law for Vector Addition 

3. Distributive Law for Scalar Addition ( )b c  b  c+ = +A  A  A  
G G G 

( )c c c+ = +A B  A  B  
G GG G 

4. Identity Element for Scalar Multiplication: number 1 such that 1 =A A  
G G 

( )b c  b  c+ +A A A 



Vector Decompositionp

Choose a coordinate systemChoose a coordinate system 
with an origin and axes. We 
can decompose a vectorp
into component vectors 
along each coordinate axis, 
f  l  l  th  for example along the x,y, 
and z-axes of a Cartesian 
coordinate system A vector coordinate system. A vector 
at P can be decomposed 
into the vector sum, 

+ +A A  A  A  
G G G G 

x y z = + +A A  A  A  



Unit Vectors and Componentsp

The idea ofThe idea of 
multiplication by real
numbers allows us tonumbers allows us to 
define a set of unit 
vectors at each pointvectors at each point 
in space 

i h  
( )ˆ ˆ  ̂, ,i j k  

ˆ ˆ ˆ with 
Components: 

1, 1, 1ˆ ˆ ˆ| |  | |  |  |  = = =i j k 

p 

ˆ ˆ ˆA A AA  i  A  j  A  k  
G G G ˆ ˆ ˆA A AA i j k 

G
( )x y zA ,A ,A  =A 

G 

x x y y z zA , A , A= = =A  i  A  j  A  k  
x y zA A A= + +A i j k 



s θ

Vector Decomposition in Two 
Di iDimensions 

Consider a vectorConsider a vector 
(  0)  x yA , A  ,  =A 

G 

x- and y components: 
A A (θ) A A i (θ) 

Magnitude: 
Ax = Acos(θ), Ay = Asin(θ) 

A = A x 
2 + A y 

2 g 

Di ti 

x y 

Ay Asin(θ) 
(θ ) Direction: y 

Ax 

= 
( ) 

Acos(θ) 
= tan(θ ) 

θ = tan−1( A y / A x ) 



=

= =

Vector Addition 
G 
A = Acos(θ ) î + Asin(θ ) ĵA Acos(θA ) i + Asin(θA ) j 
G 
B = Bcos(θB ) î + Bsin(θB ) ĵ 

V t  S  

( B ) ( B ) j 

C A B  
G G G 

Vector Sum: 
Components 

= +C A B  

p 
C x = A x + B x , Cy = A y + B y 

C = C cos(θ ) = Acos(θ )+ Bcos(θ )Cx C cos(θC ) Acos(θA )+ Bcos(θB ) 
Cy = C sin(θC ) = Asin(θA ) + Bsin(θB ) 

ˆ ˆ ˆ ˆ(  )  (  )  cos(  )  sin(  )x x y y C CA B  A  B  C  Cθ θ= + + + = +C i j i j 
G 



Preview: Vector Description of 
M tiMotion 

• Position ˆ ˆ( )  ( )  ( )t t ti jG • Position ( )  ( )  ( )t x t y t= +r i j 

• Displacement ˆ ˆ( )  ( )  ( )t  x  t  y  t  Δ  =  Δ  +  Δ  r i jG 

• Velocity ( )  ( )ˆ ˆ ˆ ˆ( )  ( )  ( )x y 
dx t dy t t v t v t

d d 
= + ≡ +v i j i jG y 

A  l  ti  

( )  ( )  ( )x ydt dt 
j j 

( )( ) ˆ ˆ ˆ ˆdv tdv t • Acceleration ( )( ) ˆ ˆ ˆ ˆ( )  ( )  ( )yx 
x y 

dv tdv tt a t a t
dt dt 

= + ≡ +a i j i jG 



Scalar Product
A scalar quantity

Magnitude:

The scalar (dot) product can be positive, zero, or negative

Two types of projections: the scalar product is the parallel 
component of one vector with respect to the second vector 
times the magnitude of the second vector

cosA B A B

(cos ) AA B A B B (cos ) BA B A B A



⋅ = ⋅

⋅ =

Scalar Product Propertiesp

⋅ = ⋅A B  B A  
G GG G 

( )c c= 

A B  B A  

A B  A B  
G GG G 

( ) 

( ) C C C 

c c ⋅ 

+ + 

A B  A B  

A B  A  B  
G G G G GG G 

( ) C C C+ ⋅ = ⋅ + ⋅A B  A  B  



Scalar Product in Cartesian 
Coordinates

A i j k B i j k

A B
x y z x y z

x x y y z z

ˆ ˆ ˆ ˆˆ ˆA A A , B B B

A B A B A B

ˆ ˆ ˆ ˆ| || | cos(0) 1
ˆ ˆ ˆ ˆ| || |cos( /2) 0

i i i i

i j i j

ˆ ˆ ˆ ˆ ˆ ˆ 1
ˆ ˆ ˆ ˆˆ ˆ 0

i i j j k k

i j i k j k

ˆ ˆ ˆWith unit vectors ,  and i j k

Example:



=

Worked Example: Scalar 
P d  tProduct 

ˆ ˆ  ̂G 
Given two vectors ˆ ˆ  ̂A i  j k= + −  

G 

ˆ ˆ  ˆ2 3B i j k= + 
G 

Find 

2 3B i j k− − + 

A B  
G G 

Find A B⋅ 

Solution: 

A B  A B  A B  A B  
G G 

(1)( 2) (1)( 1) ( 1)(3) 6 

A B  x x y y z zA B  A B  A B  ⋅ =  +  +  

= − + − + − = −(1)( 2) (1)( 1) ( 1)(3) 6+ + 



Summary: Vector Product 
Magnitude: equal to the area of the parallelogram defined by 
the two vectors 

( ) ( )sin sin sin (0 )θ θ θ θ π× =  =  =  ≤ ≤  A B  A B  A B  A  B  
G G G GG G G G 

Direction: determined by 
the Right-Hand-Rulethe Right Hand Rule 



Properties of Vector Productsp

× = − ×A B  B A  
G GG G 

( )c c c× = ×  =  ×A B  A  B  A B  
G G GG G G 

G G G G GG G 
( )+  × = × + ×A B  C  A C B C  
G G G G GG G 



Vector Product of Unit Vectors

• Unit vectors in Cartesian coordinates
ˆ ˆ ˆ ˆ| || | sin 2 1

ˆ ˆ ˆ ˆ| || | sin(0) 0

i j i j

i i i j

ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆˆ

ˆ ˆˆ ˆ ˆ

i j k i i 0

j k i j j 0

k i j k k 0



Components of Vector Productp

ˆ ˆ ˆ ˆˆ ˆA A A B B B+ + + +A  i  j  k  B  i  j  k  
G G 

x y z x y zA A A , B B B= + + = + +A  i  j  k  B  i  j  k  

ˆ ˆ ˆG G 
( ) ( ) ( ) 

ˆ ˆ ˆ 
y z z y z x x z x y y xA B  A  B  A  B  A  B  A  B  A  B  × =  −  +  −  +  −A B  i  j  k  

i j k 

x y zA A A= 

i j k 

x y zB B B 



Worked Example: Vector 
P d  tProduct 

Find a unit vector perpendicular to 

ˆ ˆ  ̂A i j k  
G 

and 

A i j k= + −  

and 
.ˆ ˆ  ˆ2 3B i j  k= −  −  +  

G 



One Variable Calculus 



abou sca a u c o s

Review: 1D Calculus 
• Think about scalar functions in 1D: 

f (x)f (x) 

x 

24
Think of this as height of mountain vs position 



o does u c o c a e o

Derivatives 
How does function change with position?g pos 

f (x) 

df 

f (x) 

dx 

df 

df dx 
f '(a) = 

df 
dx 

= slope 
dx 

x = a 
xx a= 

25
Rate of change of f at x = a? 



o a e u c o Use de a es

By the way… Taylor Seriesy y y 
• Approximate function? Use derivatives!pp 

1.0 x) What is f(x) near x=0.35? 

0 0  

0.5 

in
(2
πx

What is f(x) near x 0.35?  

1 0  

-0.5 

0.0 

f(x
)=

si
 

0.00 0.25 0.50 0.75 1.00 

-1.0 

X 

f 

26 



o a e u c o Use de a es

By the way… Taylor Seriesy y y 
• Approximate function? Use derivatives! 

1 0) 

pp 

What is f(x) near x=0.35? 

0 0  

0.5 

1.0 

n(
2π

x) What is f(x) near x 0.35?  

T0 (x) = f (0.35) 
-0.5 

0.0

(x
)=

si
n 

0.00 0.25 0.50 0.75 1.00 

-1.0 

X 

f 

Red curve is our approximation to f(x) near 
x=0.35 using one term in the Taylor series 

27 

x 0.35  using one term in the Taylor series 



o a e u c o Use de a es

By the way… Taylor Seriesy y y 
• Approximate function? Use derivatives! 

1.0 x)
 

pp 

What is f(x) near x=0.35? 

0 0  

0.5 

in
(2
πx

 

T1(x) = f (0.35) 
What is f(x) near x 0.35?  

1 0  

-0.5 

0.0 

f(x
)=

si
 

+ f '(0.35) x − 0.35( ) 
0.00 0.25 0.50 0.75 1.00 

-1.0 

X 

f 

Red curve is our approximation to f(x) near 
x=0.35 using two terms in the Taylor series 

28 

x 0.35  using two terms in the Taylor series 



o a e u c o Use de a es

By the way… Taylor Seriesy y y 
• Approximate function? Use derivatives! 

1.0 x)
 

pp 

What is f(x) near x=0.35? 

0 0  

0.5 

in
(2
πx

 

T2 (x) = f (0.35) 
What is f(x) near x 0.35?  

1 0  

-0.5 

0.0 

f(x
)=

si
 

+ f '(0.35) x − 0.35( ) 
0.00 0.25 0.50 0.75 1.00 

-1.0 

X 

f 

+ 1 
2 f ''(0.35) x − 0.35( )2 

2 ( ) 
Red curve is our approximation to f(x) near 
x=0 35 using three terms in the Taylor series 

29 

x=0.35 using three terms in the Taylor series 



f

By the way… Taylor Seriesy y y 
• Approximate function? Use derivatives! 

0 5  

1.0 

2π
x)

 

( )T 10 ( )  (0.35)  T x  f= 
What is f(x) near x=0.35? 

0.0 

0.5 

=s
in

(2
 

10 ( )T x ( ) 
2 

'(0.35) 0.35 f x+ − 

0 00  0 2  0 0  0 1 00  

-1.0 

-0.5

f(x
)= ( )21 

2 ''(0.35) 0.35 
eleven more terms! 
f x+ − 

+ 0.00 0.25 0.50 0.75 1.00X 
eleven more terms! + 

Red curve is our approximation to f(x) near 
x=0 35 using 11 terms in the Taylor series x=0.35 using 11 terms in the Taylor series 

( )In general ( ) 
n nN x a  d fT x  

−
∑ 

30 

( ) 
0 

In general ( )  
!N n 

n x a 

T x  
n dx= = 

= ∑ 



Taylor Series Most Commonly 
Used Only to 1st Order 

0.5 

1.0 

2π
x)

 

( ) f ( ) 

Most Common: 1st Order 

-0 5 

0.0 

)=
si

n(
2 T1(x) = f (a) + 

f '( )( ) 
0 00  0 25  0 50  0 75  1 00  

-1.0 

-0.5 

X 

f(x
) f '(a) x − a( ) 

• For hints as to when to use Taylor look for 

0.00 0.25 0.50 0.75 1.00X 

• For hints as to when to use Taylor, look for 
“approximate” or “when x is small” or “small 

l ”  “  l  t ”angle” or “close to” … 
31 



Integrationg
Sum function while walking along axisSu u c o e a g a o g a s

f (x) f (x)dx
b

∫ = ?  f (x) f (x)dx
a
∫ ?

x x = a x = b

32

 
Geometry:  Find Area Also:  Sum Contributions



Move to More Dimensions 

We’ll start in 2DWe ll start in 2D 

33 



u c o s e o ou a

Scalar Functions in 2D 
• Function is height of mountain:g 

( ) z = F x, y( ) 
Z 

34XY 



o does u c o c a e o

Partial Derivatives 
How does function change with position?g pos 
In which direction are we moving? 

∂F 
> 0∂F 

≈ 0 
Z 

∂x 
> 0 

∂y 
≈ 0 

35XY 



a s as es e ou a

Gradient 
What is fastest way up the mountain?ay up 

Z 

36XY 



G ad e e s ou d ec o o o e

Gradient 
Gradient tells you direction to move:y 

ˆ ˆi jF FF ∂ ∂
∇ = + ˆ ˆ ˆi j + k∂ ∂ ∂

∇ ≡ + 
∂ ∂ ∂ i jF 

x y 
∇ + 

∂ ∂ 
j 

x y z∂ ∂ ∂ 

∂ x F ≈ 0∂ x F > 0 

37 

x 
∂ y F ≈ 0 ∂ y F > 0 



f

Line Integralg
Sum function while walking under surface 

along given curvealong given curve 
f x, y( )ds∫ =, y( )

C∫

38Just like 1D integral, except now not just along x 



2D Integrationg
Sum function while walking under surfaceg

F x y( )dA∫∫ F x, y( )dA 
Surface 
∫∫ 

39
Just Geometry:  Finding Volume Under Surface 



N-D Integration in Generalg
Now think “contribution” from each piecep

dA∫∫Find area of surface? 
Surface 
∫∫ 

dV∫∫∫Volume of object? dV 
Object 
∫∫∫Volume of object? 

Mass Density 

Mass of object? dM 
Obj 
∫∫∫ = ρ dV 

Obj 
∫∫∫ 

Object Object 

IDEA: Break object into small pieces visit 
40 

IDEA: Break object into small pieces, visit 
each, asking “What is contribution?” 



You Now Know It All 

Small Extension toSmall Extension to 
Vector FunctionsVector Functions 

41 



a ous ese a o s

Can’t Easily Draw Multidimensional 
Vector FunctionsVector Functions 

In 2D various representations:ep 

42
Vector Field Diagram 

“Grass Seeds” / “Iron Filings” 



=

Integrating Vector Functionsg g 
Two types of questions generally asked:yp q g y 

1) Integral of vector function yielding vector 

Ex : Mass Distribution 

) g y g 

ˆg r 
dMG= − ∫∫∫

G Ex.: Mass Distribution 2g r 
object 

G 
r∫∫∫ 

IDEA: Use Components - Just like scalar 
( )F r dA∫∫ 

G G ( )F r dA =∫∫ 
ˆ ˆ ˆ( )  ( )  ( )i j kF  dA  F  dA  F  dA  ∫∫ ∫∫ ∫∫

G G G 

43 

( )  ( )  ( )i r j r k rx y zF  dA  F  dA  F  dA  + +∫∫ ∫∫ ∫∫ 



= ⋅

Integrating Vector Functionsg g 
Two types of questions generally asked:yp q g y 

2) Integral of vector function yielding scalar 

Line Integral Ex : Work 

) g y g 

F sW d= ⋅∫ 
G G Line Integral Ex.: Work F s  

Curve 
W d∫ 

IDEA: While walking along the curve how
much of the function lies along our pathg p 

44 



Integrating Vector Functionsg g 
One last example: Flux 

Q: How much does field E penetrate the surface? 

Flux E AdΦ = ⋅∫∫ 
GG 

45Surface 

Flux E AE dΦ ∫∫ 



Arc Length on Circleg
One Important Geometry Fact:One Important Geometry Fact: 

Relation between arc length on circle 
and included angle 

θ Rθ R 

L = Rθ 
46 

L Rθ 



ecta u a Coo d ates

=

Differentials 
Rectangular Coordinatesg 

dV = dx dy dzdV dx dy dz 

dA = dx dydA dx dy 
dA = dx dz 
dA d ddA = dy dz 

Draw picture and think! 

47 



d ca Coo d ates

=

Differentials 
Cylindrical CoordinatesCy 

dV = ρdϕ dρ dzdV ρdϕ dρ dz 

dA = ρdϕ dzdA ρdϕ dz 
dA = ρdϕ dρ 
dA d ddA = dρ dz 

Draw picture and think! 

48 



e ca Coo d ates

=

Differentials 
Spherical Coordinates sinr θ Sp 

dV = r sinθdϕ rdθ drdV r sinθdϕ rdθ dr 

dA = r sinθdϕ rdθdA r sinθdϕ rdθ 

Draw picture and think! 

49 



Electricity and Magnetism: Math 
R iReview 

Vectors:Vectors: 
Dot Product: How parallel?p
Cross Product: How perpendicular? 

Derivatives: 
Rate of change (slope) of functionRate of change (slope) of function 
Gradient tells you how to go up fasty g p 

Integrals: 

50 

Visit each piece and ask contribution 
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