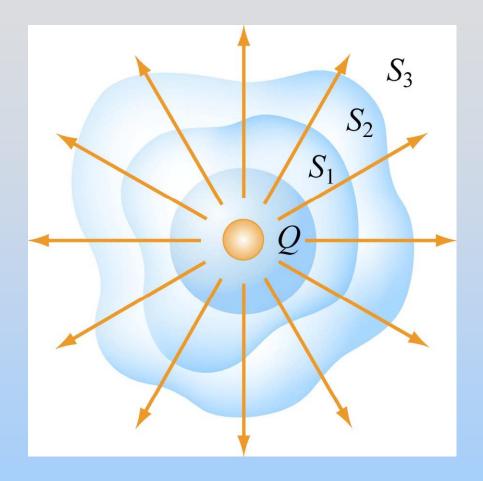
Module 05: Gauss's Law

Gauss's Law

The first Maxwell Equation!

And a very useful computational technique to find the electric field E when the source has 'enough symmetry'.

Gauss's Law – The Idea



The total "flux" of field lines penetrating any of these closed surfaces is the same and depends only on the amount of charge inside

Gauss's Law – The Equation

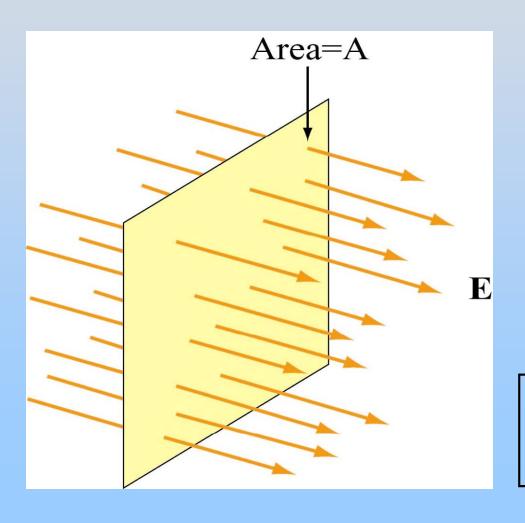
$$\mathbf{\Phi}_{E} = \iiint_{\text{closed surface S}} \mathbf{\vec{E}} \cdot d\mathbf{\vec{A}} = \frac{q_{in}}{\mathcal{E}_{0}}$$

Electric flux Φ_E (the surface integral of E over closed surface S) is proportional to charge inside the volume enclosed by S

Now the Details

Electric Flux Φ_E

Case I: E is constant vector field perpendicular to planar surface S of area A



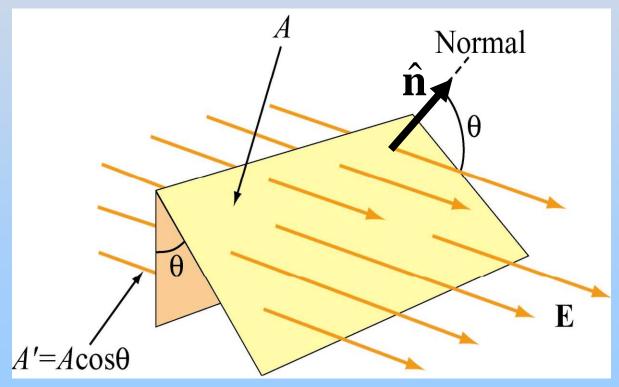
$$\mathbf{\Phi}_E = \iint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

$$\Phi_E = -EA$$

Our Goal: Always reduce problem to this

Electric Flux Φ_E

Case II: E is constant vector field directed at angle θ to planar surface S of area A



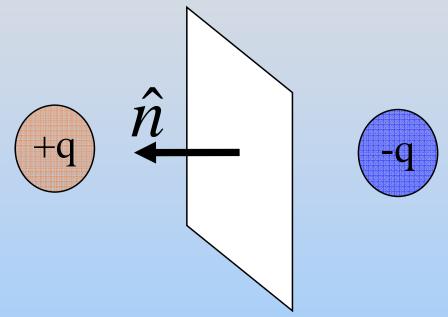
$$\Phi_{E} = \iint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

$$d\vec{\mathbf{A}} = dA\hat{\mathbf{n}}$$

$$\Phi_E = EA\cos\theta$$

Concept Question: Flux

The electric flux through the planar surface below (positive unit normal to left) is:



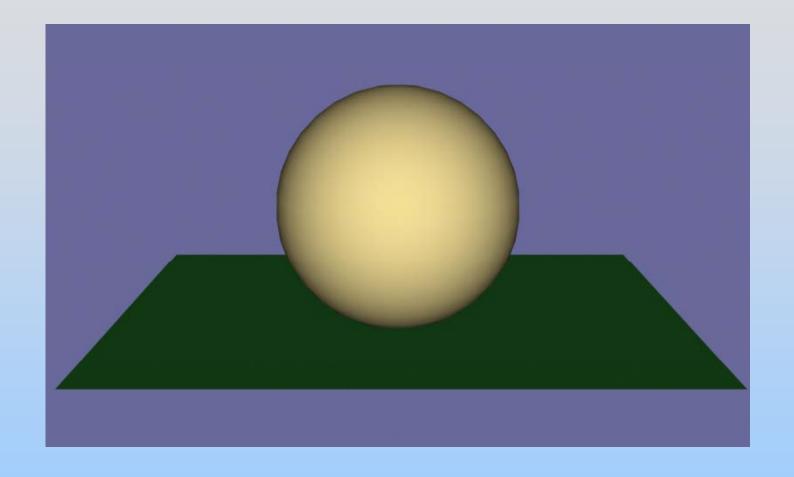
- 1. positive.
- 2. negative.
- 3. zero.
- 4. I don't know

Gauss's Law

$$\Phi_{E} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{in}}{\varepsilon_{0}}$$
closed surfaceS

Note: Integral must be over closed surface

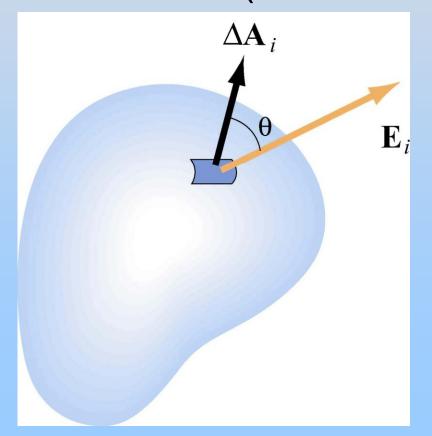
Open and Closed Surfaces



A rectangle is an open surface — it does NOT contain a volume A sphere is a closed surface — it DOES contain a volume

Area Element dA: Closed Surface

For closed surface, d**A** is normal to surface and points outward (from inside to outside)

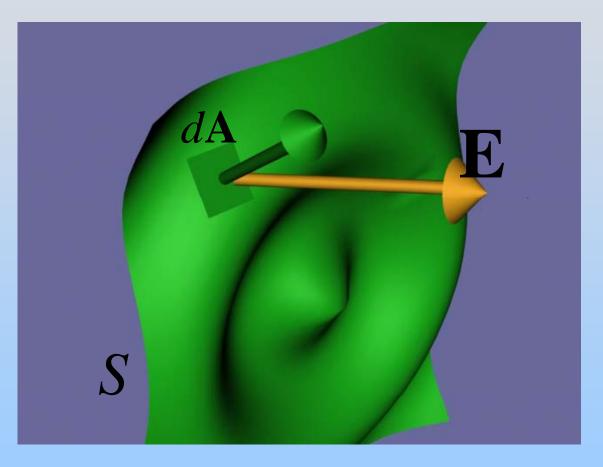


$$\Phi_E > 0$$
 if E points out

$$\Phi_F$$
 < 0 if E points in

Electric Flux Φ_E

Case III: E not constant, surface curved

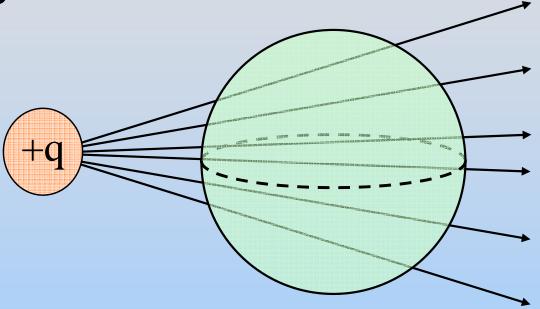


$$d\Phi_E = \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

$$\Phi_E - \iint d\Phi_E$$

Concept Question: Flux thru Sphere The total flux through the below spherical

surface is



- positive (net outward flux).
- negative (net inward flux).
- 3. zero.
- 4. I don't know

Electric Flux: Sphere

Point charge *Q* at center of sphere, radius *r*

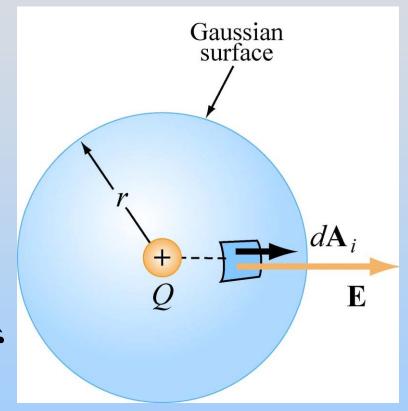
E field at surface:

$$\vec{\mathbf{E}}(r) = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{\mathbf{r}}$$

Electric flux through sphere:

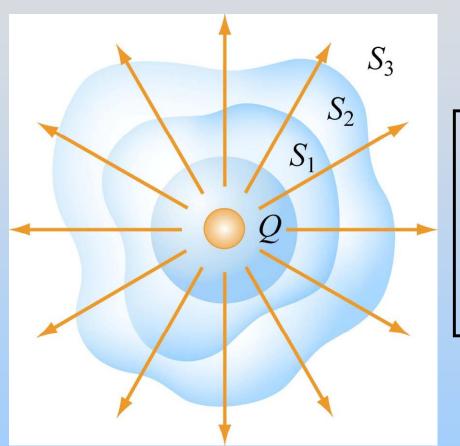
$$\mathbf{\Phi}_{E} = \iiint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \iiint_{S} \frac{\dot{Q}}{4\pi\varepsilon_{0}r^{2}} \hat{\mathbf{r}} \cdot dA \hat{\mathbf{r}}$$

$$= \frac{Q}{4\pi\varepsilon_0 r^2} \iint_{S} dA = \frac{Q}{4\pi\varepsilon_0 r^2} 4\pi r^2 = \frac{Q}{\varepsilon_0}$$



$$d\vec{\mathbf{A}} = dA\,\hat{\mathbf{r}}$$

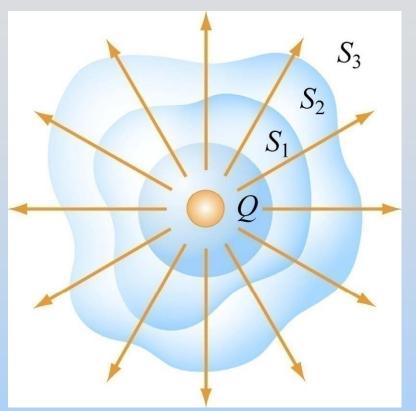
Arbitrary Gaussian Surfaces



$$\Phi_E = \iint_{\text{closed surface S}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q}{\varepsilon_0}$$

True for all surfaces such as S_1 , S_2 or S_3 Why? As A gets bigger E gets smaller

Choosing Gaussian Surface



$$\Phi_{E} = \iint_{\text{closed surface S}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q}{\varepsilon_{0}}$$

True for ALL surfaces

Useful (to calculate E)

for SOME surfaces

Desired E: Perpendicular to surface and constant on surface.

Flux is EA or -EA.

Other E: Parallel to surface.

Flux is zero

Symmetry & Gaussian Surfaces

Desired E: perpendicular to surface and constant on surface. So Gauss's Law useful to calculate E field from highly symmetric sources

Source Symmetry	Gaussian Surface
Spherical	Concentric Sphere
Cylindrical	Coaxial Cylinder
Planar	Gaussian "Pillbox"

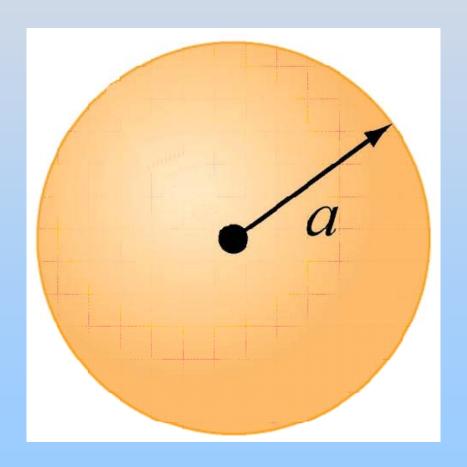
Applying Gauss's Law

- 1. Based on the source, identify regions in which to calculate E field.
- 2. Choose Gaussian surfaces S: Symmetry
- 3. Calculate $\Phi_E = \iint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$
- 4. Calculate q_{in} , charge enclosed by surface S
- 5. Apply Gauss's Law to calculate E:

$$\Phi_{E} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{in}}{\varepsilon_{0}}$$
closed surfaceS

Examples: Spherical Symmetry Cylindrical Symmetry Planar Symmetry

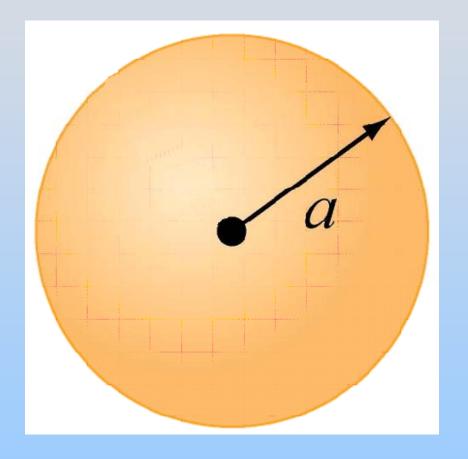
+Q uniformly distributed throughout non-conducting solid sphere of radius a. Find E everywhere



Symmetry is Spherical

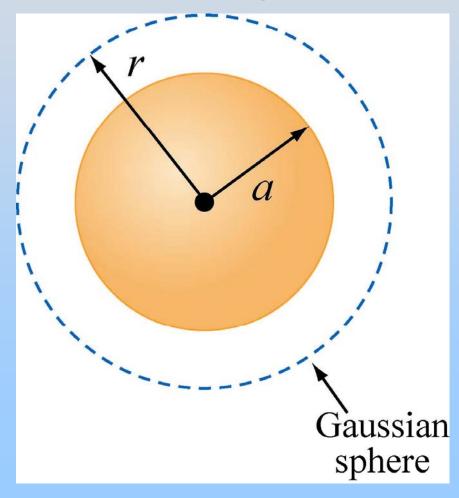
$$\vec{\mathbf{E}} = E \hat{\mathbf{r}}$$

Use Gaussian Spheres



Region 1: r > a

Draw Gaussian Sphere in Region 1 (r > a)

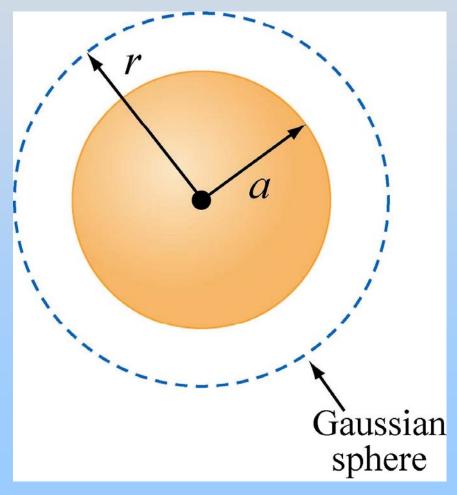


Note: *r* is arbitrary **but** is the radius for which you will calculate the E field!

Problem: Outside Sphere

Region 1: r > a

Use Gauss's Law in Region 1 (r > a)

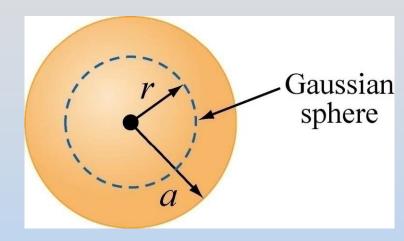


Again: Remember that *r* is arbitrary **but** is the radius for which you will calculate the E field!

Region 2: r < a

Total charge enclosed:

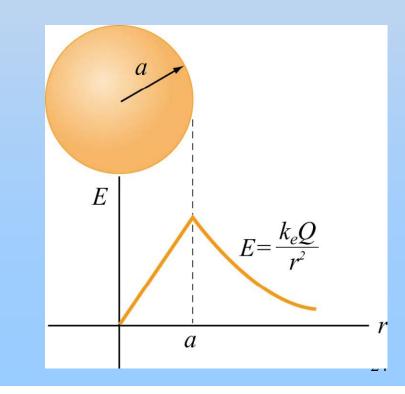
$$q_{in} = \left(\frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi a^3}\right)Q = \left(\frac{r^3}{a^3}\right)Q \quad \text{OR} \quad q_{in} = \rho V$$



Gauss's law:

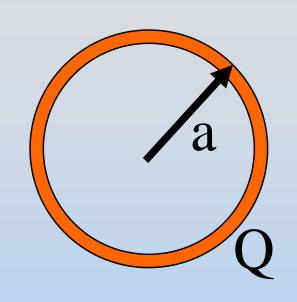
$$\Phi_E = E\left(4\pi r^2\right) = \frac{q_{in}}{\mathcal{E}_0} = \left(\frac{r^3}{a^3}\right) \frac{Q}{\mathcal{E}_0}$$

$$E = \frac{Q}{4\pi\varepsilon_0} \frac{r}{a^3} \Rightarrow \vec{\mathbf{E}} = \frac{Q}{4\pi\varepsilon_0} \frac{r}{a^3} \hat{\mathbf{r}}$$



Concept Question: Spherical Shell

We just saw that in a solid sphere of charge the electric field grows linearly with distance. Inside the charged spherical shell at right (r<a) what does the electric field do?

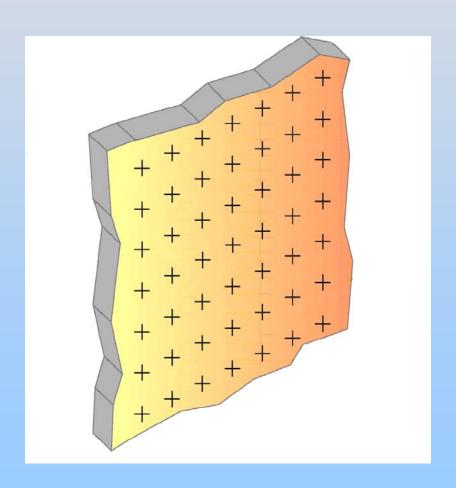


- 1. Constant and Zero
- 2. Constant but Non-Zero
- 3. Still grows linearly
- 4. Some other functional form (use Gauss' Law)
- 5. Can't determine with Gauss Law

Demonstration Field Inside Spherical Shell (Grass Seeds):

Gauss: Planar Symmetry

Infinite slab with uniform charge density σ Find \boldsymbol{E} outside the plane



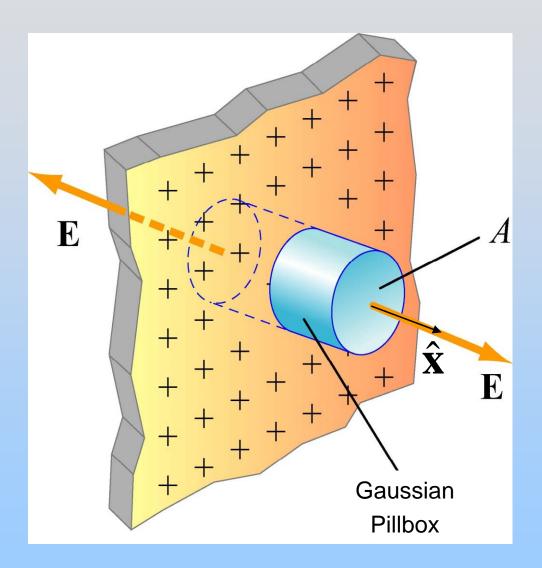
Gauss: Planar Symmetry

Symmetry is Planar

$$\vec{\mathbf{E}} = \pm E \hat{\mathbf{x}}$$

Use Gaussian Pillbox

Note: A is arbitrary (its size and shape) and should divide out



Gauss: Planar Symmetry

Total charge enclosed: $q_{in} = \epsilon A$

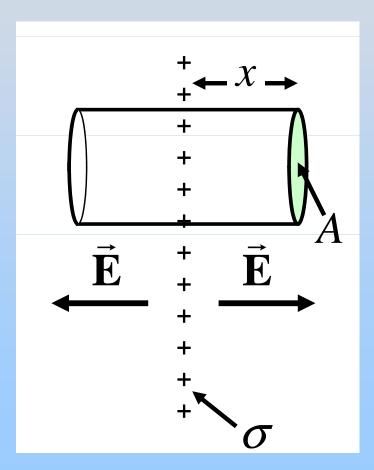
NOTE: No flux through side of cylinder, only endcaps

$$\Phi_{E} = \iiint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = E \iiint_{S} dA = EA_{Endcaps}$$

$$\mathcal{F}(\mathbf{C}, \mathbf{A}) = q_{in} \quad \mathbf{C}(\mathbf{A})$$

$$= E\left(2A\right) = \frac{q_{in}}{\mathcal{E}_0} = \frac{\sigma A}{\mathcal{E}_0}$$

$$E = \frac{\epsilon}{2\varepsilon_0} \Rightarrow \vec{\mathbf{E}} = \frac{\sigma}{2\varepsilon_0} \begin{cases} \hat{\mathbf{x}} & \text{to right} \\ -\hat{\mathbf{x}} & \text{to left} \end{cases}$$



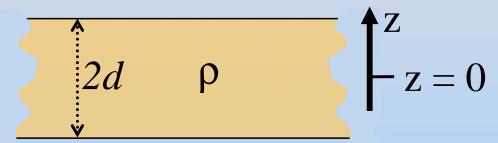
E for Plane is Constant????

- 1) Dipole: E falls off like 1/r³
- 2) Point charge: E falls off like 1/r²
- 3) Line of charge: E falls off like 1/r
- 4) Plane of charge: E constant

Concept Question: Slab of Charge

Consider positive, semi-infinite (in x & y) flat slab z-axis is perp. to the sheet, with center at z = 0.

At the plane's center (z = 0), **E**

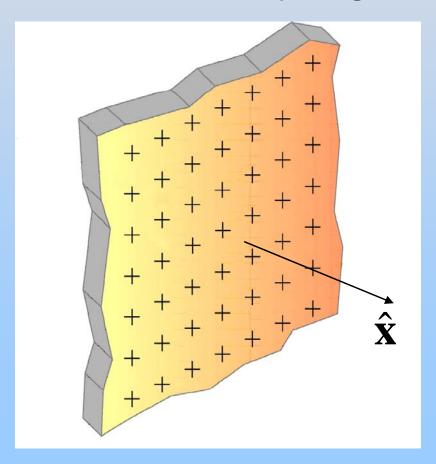


- 1. points in the positive z-direction.
- 2. points in the negative z-direction.
- 3. points in some other (x,y) direction.
- 4. is zero.
- 5. I don't know

Problem: Charge Slab

Infinite slab with uniform charge density ρ Thickness is 2d (from x=-d to x=d).

Find **E** for x > 0 (how many regions is that?)



Gauss: Cylindrical Symmetry

Infinitely long rod with uniform charge density λ

Find **E** outside the rod.

Gauss: Cylindrical Symmetry

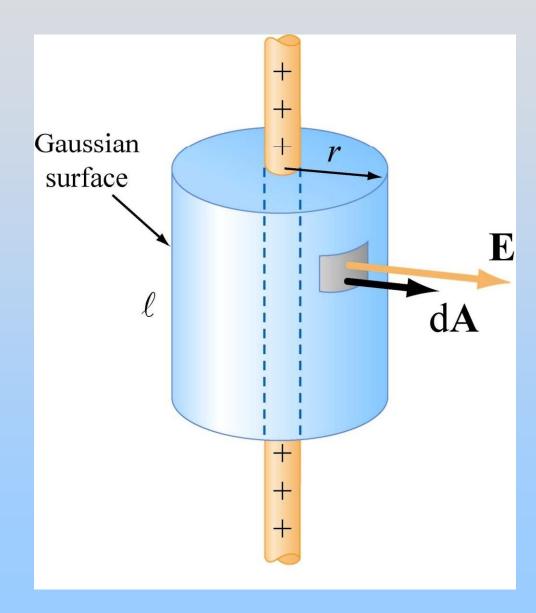
Symmetry is Cylindrical

$$\vec{\mathbf{E}} = E \hat{\mathbf{r}}$$

Use Gaussian Cylinder

Note: *r* is arbitrary **but** is the radius for which you will calculate the E field!

ℓ is arbitrary and should divide out

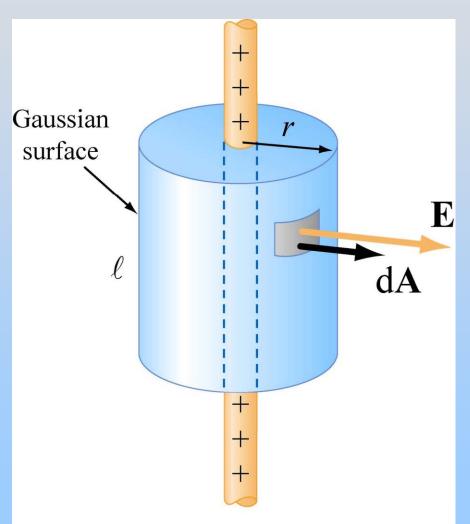


Gauss: Cylindrical Symmetry

Total charge enclosed: $q_{in} = \lambda \ell$

$$\Phi_{E} = \iiint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = E \iiint_{S} d\mathbf{A} = E\mathbf{A}$$
$$= E(2\pi r\ell) = \frac{q_{in}}{\varepsilon_{0}} = \frac{\lambda\ell}{\varepsilon_{0}}$$

$$E = \frac{\lambda}{2\pi\varepsilon_0 r} \Longrightarrow \vec{\mathbf{E}} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{\mathbf{r}}$$



MIT OpenCourseWare http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.