Module05: Gauss's Law

Gauss's Law

The first Maxwell Equation!

And a very useful computational technique to find the electric field E when the source has 'enough symmetry'.

Gauss's Law - The Idea

The total "flux" of field lines penetrating any of these closed surfaces is the same and depends only on the amount of charge inside

Gauss's Law – The E quation

Electric flux Φ*E* (the surface integral of E over closed surface S) is proportional to charge inside the volume enclosed by S

Now the Details

Electric Flux Φ*E*

Case I: E is constant vector field perpendicular to planar surface S of area A

$$
\Phi_E = \iint \vec{E} \cdot d\vec{A}
$$

$$
\Phi_E = + EA
$$

Our Goal: Always reduce problem to this

Electric Flux Φ*E*

Case II: E is constant vector field directed at angle θ to planar surface S of area A

Concept Question: Flux

The electric flux through the planar surface below (positive unit normal to left) is:

- 1. positive.
- 2. negative.
- 3. zero.
- 4. I don't know

Gauss's Law

Note: Integral must be over closed surface

Open and Closed Surfaces

A rectangle is an open surface — it does NOT contain a volume A sphere is a closed surface — it DOES contain a volume

Area Element dA: Closed Surface

For closed surface, dA is normal to surface and points outward (from inside to outside)

 $\Phi_F > 0$ if E points out

 Φ_F < 0 if E points in

Electric Flux Φ_F

Case III: E not constant, surface curved

 $d\Phi_E = \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$ $\Phi_E = \iint d\Phi_E$

Concept Question: Flux thru Sphere
The total flux through the below spherical

surface is

- 1. positive (net outward flux).
- 2. negative (net inward flux).
- 3. zero.
- 4. I don't know

Electric Flux: S phere

Point charge *Q* at center of sphere, radius *r*

E field at surface:

$$
\vec{E}(r) = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{r}
$$

Electric flux through sphere:
\n
$$
\Phi_E = \iint_S \vec{E} \cdot d\vec{A} = \iint_S \frac{Q}{4\pi \varepsilon_0 r^2} \hat{\mathbf{r}} \cdot dA \hat{\mathbf{r}}
$$

$$
= \frac{Q}{4\pi\epsilon_0 r^2} \iint_S dA = \frac{Q}{4\pi\epsilon_0 r^2} 4\pi r^2 = \frac{Q}{\epsilon_0}
$$

 $d\vec{A} = dA\hat{r}$

Arbitrary Gaussian Surfaces

True for all surfaces such as $\mathcal{S}_1, \ \mathcal{S}_2$ or \mathcal{S}_3 Why? As A gets bigger E gets smaller

Choosing Gaussian Surface

True for ALL surfaces **Useful** (to calculate E) for SOME surfaces

Desired **E**: Perpendicular to surface and constant on surface.

Flux is EA or -EA.

Other **E**: Parallel to surface. Flux is zero

Symmetry & Gaussian Surfaces

Desired **E**: perpendicular to surface and constant on surface. So Gauss's Law useful to calculate E field from **highly symmetric sources**

Applying Gauss s' Law

- 1. Based on the source, identify regions in which to calculate E field.
- 2. Choose Gaussian surfaces S: Symmetry
- 3. Calculate ∫∫ $\Phi_{\nu} = \Phi \mathbf{E} \cdot d\mathbf{A}$ \rightarrow \rightarrow $E = \Phi \mathbf{E} \cdot d$
- 4. Calculate q_{in} , charge enclosed by surface S
- 5. Apply Gauss's Law to calculate E:

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\mathcal{E}_0}
$$

closed surfaces

Examples: Spherical Symmetry Cylindrical Symmetry Planar Symmetry

+ Q uniformly distributed throughout non-conducting solid sphere of radius *a*. Find **E** everywhere

Symmetry is Spherical

Use Gaussian Spheres

Region 1: *r* > *^a*

Draw Gaussian Sphere in Region 1 (*^r*> *^a*)

Note: *r* is arbitrary **but** is the radius for which you will calculate the E field!

Problem: Outside Sphere

Region 1: *r* > *^a*

Use Gauss's Law in Region 1 (*^r*> *^a*)

Again: Remember that *^r*is arbitrary **but** is the radius for which you will calculate the E field!

Region 2: *^r* < *a*

 $\left(4\right)$ Total charge enclosed: π*r* 3 ⎜ ⎟ 3 $\bigg($ \bigcap

$$
q_{in} = \left(\frac{3}{\frac{4}{3}\pi a^3}\right) Q = \left(\frac{r^2}{a^3}\right) Q \quad \text{OR} \quad q_{in} = \rho V
$$

Gauss's law:

$$
\Phi_E = E\left(4\pi r^2\right) = \frac{q_{in}}{\varepsilon_0} = \left(\frac{r^3}{a^3}\right)\frac{Q}{\varepsilon_0}
$$

$$
E = \frac{Q}{4\pi\varepsilon_0} \frac{r}{a^3} \bigg| \Longrightarrow \vec{E} = \frac{Q}{4\pi\varepsilon_0} \frac{r}{a^3} \hat{r}
$$

Concept Question: Spherical Shell

We just saw that in a solid sphere of charge the electric field grows linearly with distance. Inside the charged spherical shell at right (r<a) what does the electric field do?

- 1. Constant and Zero
- 2. Constant but Non-Zero
- 3. Still grows linearly
- 4. Some other functional form (use Gauss' Law) (
- 5. Can't determine with Gauss Law

Demonstration Field Inside Spherical Shell (Grass Seeds):

Gauss: Planar Symmetry

Infinite slab with uniform charge density σ Find **E** outside the plane

Gauss: Planar Symmetry

Symmetry is Planar

 \rightarrow $\mathbf{E} = \pm E \, \hat{\mathbf{x}}$

Use Gaussian Pillbox

Note: *A* is arbitrary (its size and shape) and

Gauss: Planar Symmetry

Total charge enclosed: $q_{in} = cA$ NOTE: No flux through side of cylinder, only endcaps

$$
\Phi_E = \iiint_S \vec{E} \cdot d\vec{A} = E \iiint_S dA = EA_{Endcaps}
$$
\n
$$
= E(2A) = \frac{q_{in}}{\varepsilon_0} = \frac{\sigma A}{\varepsilon_0}
$$
\n
$$
E = \frac{\varepsilon}{2\varepsilon_0} \Rightarrow \vec{E} = \frac{\sigma}{2\varepsilon_0} \times \text{to right}
$$

E for Plane is Constant????

- 1) Di
-
- 3) Line of charge: E falls off like 1/r
-) Dipole: E falls off like $1/r³$
- 2) Point charge: E falls off like $1/r^2$
	-
- 4) Plane of charge: E constant

Concept Question: Slab of Charge Consider positive, semi-infinite (in x & y) flat slab z-axis is perp. to the sheet, with center at $z = 0$.

At the plane's center $(z = 0)$, **E**

$$
\begin{array}{|c|c|}\n\hline\n2d & p & z = 0 \\
\hline\n\end{array}
$$

- 1.points in the positive z-direction.
- 2. points in the negative z-direction.
- 3. points in some other (x,y) direction.
- 4. is zero.
- 5. I don't know

Problem: Charge Slab

Infinite slab with uniform charge density ρ Thickness is 2d (from $x=-d$ to $x=d$). Find E for $x > 0$ (how many regions is that?)

Gauss: Cylindrical Symmetry

Infinitely long rod with uniform charge density λ

Find **E** outside the rod.

 $+$ \pm \pm \pm \pm $\frac{1}{\sqrt{2}}$ H. $\frac{1}{\sqrt{2}}$ \mathbf{H} $\frac{1}{\sqrt{2}}$ \mathbf{H} $\overline{}$

Gauss: Cylindrical Symmetry

Symmetry is Cylindrical

ˆ \rightarrow $\mathbf{E} = E \, \hat{\mathbf{r}}$

Use Gaussian Cylinder

Note: *r* is arbitrary **but** is the radius for which you will calculate the E field! ℓ is arbitrary and should divide out

Gauss: Cylindrical Symmetry

Total charge enclosed: $\ q_{\scriptscriptstyle in} = \lambda \ell$ ge enclosed: $\,q_{_{in}}$

$$
\Phi_E = \iiint_S \vec{E} \cdot d\vec{A} = E \iiint_S dA = EA
$$
\n
$$
= E(2\pi r\ell) = \frac{q_{in}}{\varepsilon_0} = \frac{\lambda\ell}{\varepsilon_0}
$$
\nsurface

$$
E = \frac{\lambda}{2\pi\varepsilon_0 r} \Longrightarrow \vec{\mathbf{E}} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{\mathbf{r}}
$$

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.