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Outline: 

A. Superposition of waves, Interference 

B. Interferometry 

-  Amplitude-splitting (e.g. Michelson interferometry) 

- Wavefront-splitting (e.g. Young’s Double Slits) 

C. More Interferometry: Fabry Perot, etc 

 

A. Superposition of Waves, Interference 
 
The nature of linear wave equation guarantees that waves can be superimposed: 
we may combine an array of waves by algebra, as far as each of them are proper 
solution of the wave equation. To facilitate this process, we make use of the 
following complex number to represent the wave field. 

 
- Waves in complex numbers 

For example, the electric field of a monochromatic light field can be 
expressed as: 
 

𝐸(𝑧, 𝑡) = 𝐴𝑐𝑜𝑠(𝑘𝑧 − 𝜔𝑡 + 𝜑)   (1) 
 

Since  exp(𝑖𝑥) = cos(𝑥) + 𝑖 sin(𝑥)    (2) 
 

𝐸(𝑧, 𝑡) = 𝑅𝑒{𝐴𝑒𝑥𝑝[𝑖(𝑘𝑧 − 𝜔𝑡 + 𝜑)]}   (3) 
 
Or 

  

𝐸(𝑧, 𝑡) =
1

2
{𝐴𝑒𝑥𝑝[𝑖(𝑘𝑧 − 𝜔𝑡 + 𝜑)]} + 𝑐. 𝑐. (𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒)  (4) 

 
- Complex numbers simplify optics! Interference with two beams 

e.g. 2 plane waves propagating in +z direction 
 

 𝐸1𝑥 =  𝐸1𝑥(0)𝑒𝑥𝑝[𝑖(𝑘1𝑧 − 𝜔1𝑡 + 𝜑1)]     (5) 

𝐸2𝑥 =  𝐸2𝑥(0)𝑒𝑥𝑝[𝑖(𝑘2𝑧 − 𝜔2𝑡 + 𝜑2)]    (6) 
 
We can define phase of each waves:  

𝛿1(𝑧, 𝑡) = 𝑘1𝑧 − 𝜔1𝑡 + 𝜑1      (7) 
 𝛿2(𝑧, 𝑡) = 𝑘2𝑧 − 𝜔2𝑡 + 𝜑2      (8) 

 
For a point P located at z=z0 the combined field is: 

𝐸𝑥 = 𝐸1𝑥 + 𝐸2𝑥 =  𝐸1𝑥(0) exp[𝑖𝛿1(𝑧0, 𝑡)] +  𝐸2𝑥(0) exp[𝑖𝛿2(𝑧0, 𝑡)] (9) 
 

 



Lecture Notes on Wave Optics (03/12/14) 

2.71/2.710 Introduction to Optics –Nick Fang 
 

 2 

B. Interferometry 
We often use optical interferometers to facilitate the study of interference. A few 
common setups are discussed here. Based on the operation principle to split the 
beams, we may find the so-called amplitude-splitting or wavefront-splitting devices. 
 
 

- Michelson Interferometry 
 

The Michelson Interferometer is 
named after Albert Michelson, who 
used it with Edward Morley in 1887, 
in an attempt to measure the 
existence of the "ether".  
 
In Michelson- Morley’s famous experiment, the delay time ∆𝜏 is achieved simply by 
moving a mirror along the optical axis. Moving a mirror backward by a distance L 
yields a delay of:  

∆𝜏 =
2𝐿

𝑐
      (10) 

(e.g. 300 µm of mirror displacement yields a delay of 2 × 10−12s=2ps).   
 

A Michelson Interferometer as shown in left 
schematic, split a beam of incident light into 
two arms using a thin glass window. Both 
beams travel to mirrors that are precisely 
aligned to reflect them. Before recombining 
them at the beam splitter, the two beams 
traveled with different optical path length L1 
and L2.  
 

𝐼 = 2𝐼0 + 2𝐼0 〈cos (2𝜔
L1−L2

𝑐
)〉  (11) 

 
The variation of intensity as a function of the 

path length L1 gives us a measure of wavelength of light! Recent effort is to apply such 
technology in measurement of gravity waves. 
 

       Observation:   
 

- Michelson Interferometer measures (auto)-correlation in time. 
 
To see this effect, we suppose the input light beam is not monochromatic. 
Thus 

𝐼 =
𝑐

2
𝜀〈𝐸𝑥 ∙ 𝐸𝑥

∗〉 =
𝑐

2
𝜀〈(𝐸1𝑥 + 𝐸1𝑥(𝑡 − 𝜏)) ∙ (𝐸1𝑥

∗ + 𝐸1𝑥
∗ (𝑡 − 𝜏))〉   (12) 
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𝐼 = 𝐼1(𝑡) + 𝐼1(𝑡 − 𝜏) + 2〈𝐸1𝑥 ∙ 𝐸1𝑥
∗ (𝑡 − 𝜏)〉    (13) 

 
Such auto-correlation function tells the similarity of the field over given 
period of time. The Fourier transform of the auto-correlated signal yields the 
Power Spectrum: 
 

∫ 𝐸1𝑥 ∙ 𝐸1𝑥
∗ (𝑡 − 𝜏)𝑑𝑡

∞

0

𝐹𝑇
⇒ 𝐸1𝑥(𝜔) ∙ 𝐸1𝑥

∗ (𝜔) = |𝐸1𝑥(𝜔)|
2  (14) 

This is how Fourier Transform Spectroscopy (often abbreviated as FTIR) are 
constructed nowadays. (See Pedrotti 21-2 for more discussion) 

 
 

- In the above analysis we assumed the input beams 
are ideal plane waves so we only focused on 
intensity variation of a single spot as the arm length 
changes. In reality, a set of nested rings are often 
observed on the receiving screen as the pattern on 
right. This is due to the variation of phase as a 
function of momentum difference (𝑘1 − 𝑘2)𝑧. 

 

 
 
 

- Young’s Double Slit Interferometry 
 
To analyze Young’s experiment, 
we assume the screen X with 
two narrow slit is illuminated 
with a monochromatic plane 
wave.  After the slits, two 
cylindrical waves are excited.  
This creates fringes at the 
observation plane X’ , after 
travelling a distance 𝑧 = 𝑙.   
 
For a position x’ on the screen, 

the phase difference of the two waves becomes: 

Interferogram
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𝛿1 − 𝛿2 = 𝑘(𝑟1 − 𝑟2) + (𝜑1 − 𝜑2)     (15) 

 

where 𝑟1 = √(𝑥′ − 𝑥0)2 + 𝑙2, 𝑟2 = √(𝑥′ + 𝑥0)2 + 𝑙2.  When the slits are arranged 
symmetrically and the incoming plane wave is at normal incidence, then 𝜑1 − 𝜑2 =
0 
 
In a typical experiment the screen is placed far away from the slits (𝑙 ≫ 𝑥0) so we 
can further take approximation: 

𝑟1 = 𝑙√1 +
(𝑥′−𝑥0)

𝑙2

2

≈ 𝑙 (1 +
(𝑥′−𝑥0)

2𝑙2

2

)     (16) 

 

𝑟2 = 𝑙√1 +
(𝑥′+𝑥0)

𝑙2

2

≈ 𝑙 (1 +
(𝑥′+𝑥0)

2𝑙2

2

)     (17) 

(𝑟1 − 𝑟2) = −
2𝑥′𝑥0

𝑙
      (18) 

In order for the constructive interference to occur, cos(𝛿1 − 𝛿2) = 1, then 

𝑘(𝑟1 − 𝑟2) = −𝑘
2𝑥0𝑥

′

𝑙
= 2𝑚𝜋     (19) 

𝑚 = 0,±1, ±2,…. are called order number. 
 

This gives rise to the famous condition:  
 

2𝑥0𝑥
′ = 𝑚𝑙𝜆       (20) 

 
Therefore Young’s experiments directly measured the wavelength of light (in 18 
century!) 
 
Note: Generally fringes will form by two or more beams crossing at an angle. To 
quantify that we can modify our phase term for the crossing beams: 
 

𝛿1(𝑥, 𝑧, 𝑡) = 𝑘1𝑥𝑥 + 𝑘1𝑧𝑧 − 𝜔1𝑡 + 𝜑1   (21) 
or in terms of incident angle θ: 

𝛿1(𝑥, 𝑧, 𝑡) = 𝑘1𝑥𝑠𝑖𝑛𝜃1 + 𝑘1𝑧𝑐𝑜𝑠𝜃1 − 𝜔1𝑡 + 𝜑1   (22) 
 
𝛿1 − 𝛿2 = (𝑘1𝑠𝑖𝑛𝜃1 − 𝑘2𝑠𝑖𝑛𝜃2)𝑥 + (𝑘1𝑐𝑜𝑠𝜃1 − 𝑘2𝑐𝑜𝑠𝜃2)𝑧 + (𝜑1 − 𝜑2)  (23) 

 
Fringes can vary both on x and z directions! 
 
- Note: Young’s double slit experiment measures the correlation in space.  

Assuming the input light beam is not a plane wave (i.e. inhomogeneous), at x’=0 
we measure the interference: 

𝐼 =
𝑐

2
𝜀〈𝐸𝑥 ∙ 𝐸𝑥

∗〉 =
𝑐

2
𝜀〈(𝐸1𝑥(𝑥 − 𝑥0) + 𝐸1𝑥(𝑥+𝑥0)) ∙ (𝐸1𝑥

∗ (𝑥 − 𝑥0) + 𝐸1𝑥
∗ (𝑥 + 𝑥0))〉 (24) 
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𝐼 = 𝐼1(𝑥 − 𝑥0) + 𝐼1(𝑥 + 𝑥0) + 2〈𝐸1𝑥(𝑥 − 𝑥0) ∙ 𝐸1𝑥
∗ (𝑥 + 𝑥0)〉  (25) 

 
Such correlation function tells the similarity of the field over a given spatial 
period. This effect is often used to measure the coherence of a remote star 
under the telescope, although the radiation is thought to be randomly 
distributed. A daily life example is the spatial coherence of ripples in the pool 
(“Spatial coherence from Ducks” by Emil Wolf et al, Physics today 2010). 

 
- Comparison between Michelson and Young’s double slits:  

Both can be regarded as interference of two spherical waves, but observed in 
different directions. 
 
 
 

 
 

- Other wavefront splitting interferometry similar to Young’s Double slits: 
o Lloyd’s Mirror 
o Fresnel’s biprism 
o Fresnel’s mirror 
o Billet’s split lens 

 
 

C. More examples of Interferometry 
 
 

 
- Thin Film interference 
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- Fabry-Perot Interferometry 
Consider two parallel reflective 

surfaces separated by distance d, 

the first one has a amplitude 

transmission and reflection 

coefficient t and r, and the 

second has amplitude 

transmission and reflection 

coefficient t’ and r’.   Multiple 

reflections between the two 

surfaces results in two series of 

reflected and transmitted terms. Due to the round trip travel path, there is a phase 

difference between successive transmitted terms:  

𝛿0 = (2𝑘𝑧𝑑)       (26) 

The transmitted series is  

𝐸𝑡 = exp (𝑖𝛿0/2)(𝑡
′𝑡𝐸0 + 𝑡

′(𝑟𝑟′)𝑡𝐸0 exp(𝑖𝛿0) + 𝑡
′(𝑟𝑟′)2𝑡𝐸0 exp(2𝑖𝛿0) + ⋯ ) 

(27) 
𝐸𝑡 = 𝑡

′𝑡𝐸0exp (𝑖𝛿0/2)[1 + (𝑟𝑟
′) exp(𝑖𝛿0) + (𝑟𝑟

′)2 exp(2𝑖𝛿0) + ⋯ ] 

(28) 

𝐸𝑡 = 𝑡
′𝑡𝐸0exp (𝑖𝛿0/2)∑ (𝑟𝑟′)𝑛 exp(𝑖𝑛𝛿0)

∞
𝑛=0     (29) 

 

𝐸𝑡 =
𝑡′𝑡exp (𝑖𝛿0/2)𝐸0

1−𝑟𝑟′ exp(𝑖𝛿0)
      (30) 

 

The transmitted irradiance is given by: 

𝐼𝑡 =
𝑇′𝑇𝐼0

|1−𝑟𝑟′ exp(𝑖𝛿0)|2
       (31) 

The denominator of the last result can be expressed as: 

|1 − 𝑟𝑟′ exp(𝑖𝛿0)|
2 = (1 − 𝑟𝑟′ exp(𝑖𝛿0))(1 − 𝑟

∗𝑟′∗ exp(−𝑖𝛿0)) 

= 1 − (𝑟 𝑟′exp(𝑖𝛿0) + 𝑟
∗𝑟′∗ exp(−𝑖𝛿0)) + 𝑅𝑅′ 

= 1 − 2√𝑅𝑅′cos (𝛿) + 𝑅𝑅′ 

= (1 − √𝑅𝑅′)
2
+ 2√𝑅𝑅′(1 − cos(𝛿)) 

= (1 − √𝑅𝑅′)
2
+ 4√𝑅𝑅′sin2 (

𝛿

2
)     (32) 

 

Where 𝛿 = (2𝑘𝑧𝑑) + 𝜙𝑟 + 𝜙𝑟′       (33) 

 

We define the coefficient of finesse F: 

r, t r’, t’

E0

tE0

rE0

r’tE0 t’tE0

tr’tE0eid

rr’tE0

r’rr’tE0

tr’(rr’)tE0e2id

t’rr’tE0eid

t’(rr’)2tE0e2id

(rr’)2tE0

r’(rr’)2tE0
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ℱ =
4√𝑅𝑅′

(1−√𝑅𝑅′)
2      (34) 

To express the general form of It: 

𝐼𝑡 =
𝑇′𝑇𝐼0

(1−√𝑅𝑅′)
2 [

1

1+ℱsin2 (
𝛿

2
)
]    (35) 

 
Applications: Fabry-Perot cavities are often designed to distinguish closely spaced 
spectral lines of a gas medium. Higher values of Finesse F give a sharper 
transmission pass band and greater spectral resolution. To find the half-width of the 
pass band, we solve: 
 

1

1+ℱsin2 (
𝛿

2
)
=
1

2
      (36) 

giving 

𝑠𝑖𝑛 (
𝛿1/2

2
) =

1

√ℱ
      (37) 

 

 
Figure 8.9 from Pedrotti: Transmittance of Fabry-Perot Cavity. 
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