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Part 2 Representation and Learning 

We now move on to the second part of the course, Representation and Learning. You will 
learn various forms of system representation, including linear and nonlinear systems. We 
will use “Prediction” form as a generic representation of diverse systems. You will also 
learn data compression and learning, which are closely related to system representation 
and prediction. 

5 Prediction Modeling of Linear Systems 

5.1 Impulse Response and Transfer Operator (Review) 

Linear Time-Invariant system 
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Impulse response: 
a complete characterization 

t t t 
Continuous time 
impulse response Discrete time impulse response 

Any linear time-invariant system can be characterized completely with Impulse Response: 
( ( )t g ) . For an arbitrary input, { s s u ≤ t } , the output y (t ) is given by the convolution of the 

input and the impulse response given by 

∞ 

 Continuous Time Convolution   t y ) = g (τ ) t u − τ τ (1)( ( )d∫ 
0 

For discrete-time systems, an impulse response is given by an infinite time series: 
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g ( ), 0 g ( ),1 g ( ), 2 ", or { g ( τ τ = 0…∞}) 

Output { s s y ≤ t }{ s s u ≤ t }( ) ( ) 

Discrete Time Convolution Continuous Time Differential Operator 
∞ d p = ( ( ) (t y ) =∑ t u k g − k ) (2) dt 

k = 1 �� Forward shift operator: q y + 2 y � + 3y = u � + 2u 

( ( (qu (t ) = t u + 1) (3) ( p 2 + 2 p + 3) t y ) = ( p + 2) t u ) 

t y ) = 
p + 2 t u )2Backward shift operator: q-1 ( 

p + 2 p + 3
( 

( (q− 1 t u ) = t u − 1)  (4) 

Using(3) (4) in (2) 

∞ 
−k (t y ) =∑ k g )( q t u ))( ( 

k = 1 (5)
∞


( ) − k
 ( ) (=∑( q k g ) t u ) = G ( t u q ) 
k = 1 =



Transfer FunctionG(q) 
Transfer Operator or 

∞ ∞ 

( ) − k ( ) − kMonic Transfer Function: G (q ) + = ∑ q k g =∑ q k g w / g (0) = 11 
k = 1 k = 0 

5.2 Z-Transform: 

Taking Laplace transform of (2) yields 
( s T k y L ] = ∑ k g ) e ∆ − u L ][ �	
 [ 

∆ s T )− k(e 
∆ s T where ∆ T is a sampling interval. Replacing e by z yields the z-transform of the 

transfer function 
∞ 

G(z ) =∑ z k g ( ) − k (6) 
k = 1 

which is a complex function of z = e ∆ s T . Poles and zeros are defined as: 

zero: A zero of G(z) is a complex number zi that makes G (z ) zero: G (zi )=0 

pole: A pole of G(z) is a complex number zj that makes G (z ) infinite 
G (z j ) = ∞ 
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Bounded-input, bounded output (BIBO) stability 

c ≤ )( ')( c ≤t u t y 

∞ 

( ( ) − kThe transfer function q G ) =∑ q k g is said to be stable if 
k = 1 

∞ 

k g )( ∞ < (7)∑

k = 1


∞
 ∞ ∞ 

t y )( = ∑ t u k g − k )( ) ( ≤ ∑ t u k g − k )( ) ( ≤ c ∑ k g )( ≤ c ' 
k = 1 k = 1 k = 1 

Therefore, the condition of (7) satisfies the BIBO stability criterion. 

Input t u )( ≤ c (Bounded) Output ≤ c ' (Bounded)t y )( 

∞ 

k g )( ∞ < ∑ 
k = 1 

In the z-domain, this stability is interpreted as follows. 
Consider (6) as a Laurent expansion 

∞


( ( ) − k
z G ) =∑ z k g 
k = 1 

Under the condition of (7), this is convergent for all z ≥ 1 

Function G(z) is analytic on and outside the unit circle 

G(z) has no poles on and outside the unit circle. Æ Stable 

1 
Re 

Im 

circle. 

z-plane 

If poles exist, 
they must be 
within the unit 
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Inverse Transfer Function 
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What is the impulse response 

k g 

t y k g t u 

of the inverted system? 

∞ 

( ( ) −kConsider the z -transform z G ) =∑ z k g  is stable,                
k =0 

1Assume that function is analytic in z ≥ 1 , 
inversely stable) 
(G(z) is said to be 

z G )( 
Then it can be expressed in Laurent expansion form 

∞1 ~ =∑ z k g ( ) −k (8)
(z G ) k =0


~
This k g ) k = 0…∞  gives the impulse response of the inverse system. We write ( 

G
∞ 

−1 ~(q ) =∑ q k g ( ) −k (9) 
k =0 

Example: 
( (t y ) = t u ) + cu (t − 1) ( ( (t y ) = t u ) + cq −1 t u ) 
( (q G ) = 1 + cq −1 = (1+ cq −1) t u ) 

z-transform z G ) = 1 + cz −1 = 
z + c( 

z 
Inverting G(z) 

∞
z 1 k −k
G −1(z ) = 
1 

= = 
1 + cz −1 = ∑(−c ) z

(z G ) z + c k =0


∞


Therefore t u ) =∑(−c ) t y − k )( k (

k =0
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Note that we can compute 
)( 

1 
zG 

, since G(z ) is a function of complex number, not a 

function of “operator”. 

5.3 Noise Dynamics 

In Kalman filter, two separate noise sources, i.e. process noise and measurement noise, 
were considered. However, identifying the two noise characteristics separately is difficult 
or infeasible in some class of practical applications. In the following we will consider an 
aggregated noise model originated in a single random process. 

u(t ) y(t )
v(t )

G(q) 

H(q) 

To model v(t)

We assume that v(t) comes from a dynamic process H(q) driven by a totally 

unpredictable random process e(t)


H(q) = deterministic;  to be identified 
e(t)   = uncorrelated, zero mean 

0 t ≠ s
E [e(t) ]=0 E [ s e t e )] =  (10)( ) ( 

λ t = s 
( ( ) (t y ) =G (q ) t u ) + H ( t e q ) (11) 

System Identification:  Determine G(q) and H(q) from input-output data 

5.4 Prediction 

( ( ) (t y ) = G (q ) t u ) + H ( t e q ) 
If we know G (q ) and H (q ) , how can we best predict output t y ) based on output(
observations up to t − 1 ? 
This prediction problem is equivalent to predict t v )(

( ) ( ( (t v ) ≡ H ( t e q ) = t y ) − G (q ) t u ) (12) 

based on observation of v up to t − 1 , { s v )( s ≤ t − 1}
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