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4.9 Extended Kalman Filter 
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In many practical problems, the process dynamics are nonlinear. 

Dynamics 

Kalman Gain & 
Covariance Update 

(Linearized

If the process is nonlinear but smooth, its linearized approximation may be used for 
the process model. 

Extension to non-linear system using linearization 
Consider a non-linear, continuous system 

( , , (x � = t u x f ) + t w ) … n − dim (87)  

,y = t x h (( )+ t v ) … l − dim (88)  

f (.), and h(.) : known but non-linear, differentiable functions 

u : input (deterministic forcing term; assumed zero) 

w , v : uncorrelated process and measurement noises 


( [ (E [ t w )] = 0 , t v E )]= 0 

T T T( )  0 t ≠ s 
v t v E (s )]=  ( )E [ w t w (s )]=  [ ( )  0 t ≠ s

E [ v t w (s )]= 0 
Q t = s Q t = s 

The original Kalman filter is not applicable to this class of non-linear systems. 
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Approach Linearize the non-linear system around the state that is either: 
1) Pre-determined…linearized Kalman filter 

e.g. a trajectory to track.

or 

2) Estimated in real-time using on-line measurement 


…Extended Kalman Filter 

4.9.1 Linearized Kalman Filter 

Actual Absence of Process Noise: w = 0 
State 

jectory 

j

x ∆ , Discrepancy 

Process 

track of

Tra

Nominal 
Tra ectory 

Desired Tra

Feedback control to keep 
 the desired 

trajectory 

j. 

Time 

t x * ( ) = a nominal trajectory in the state space satisfying the noise-less state equation: 

* t x ( * ( ) ,� ( ) = t t x f ) (89)

        absence  of  process  noise  

(Consider derivation ∆ t x ) 

( *( (t x ) = t x ) ∆ + t x ) (90)  

�( � *( �(t x ) = t x ) ∆ + t x ) (91)  

Taylor expansion 
*t x f ( ,( ) = x f ∆ + t x ), 

(92)
* ∂ f

≅ t x f )+ * ∆ x x = x
( , 

∂ x 

where 
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 ∂ f 1 ∂ f 1 " 
∂ f 1  

∂ x 1 ∂ x 2 ∂ x 
 n 

∂ f 2 % #  (93)∂ f n × n 
* =∂ x 1  ∈ R Jacobian x = x∂ x  # %  
∂ f ∂ f  n n  … 
∂ x 1 ∂ xn  *  x = x 

Combining (91) and (92) 

� � (x * ∆ + x = x f *, t ) + 
∂ f 

* ∆ x + t w ( )x
�	� ∂ x� 
↓ 

* x � from (89) 

∂ f
∆ x � = * ∆ x + t w ( )

x∂ x 

∂ f n × n 
* by t F ) ∈ R(Now replacing ∆ x by x and x∂ x 

( ) (x � = x t F + t w ) (94)  

Similarly, from (88), 

×( ) ( (y = x t H + t v ) t H ) = ∂ h 
* ∈ R n l 

x∂ x 
(95) 

y ∆ + y = t x h ) + * ( *, ∂ h 
* ∆ x + v 

x∂ x 

* 

(Replacing 
y t H )


∆ y by y


( (Note that the above linearized system (94), (95) with t F ) and t H ) are in the same 

form as that of the original Kalman filter: linear time-varying systems. 
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4.9.2 Extended Kalman Filter. 

)( j. 

)(ˆ

)(* tx 

Actual t x Tra

Estimated t x 

Nominal (predetermined) 

estimated

accurate. 

With the measurement of the actual process, the 
state  trajectory is deemed to be more 

Use the state t x ˆ( ) estimated in 

real-time for linearizing the dynamics 

the Extended Kalman filter 

∂f ˆ,x = x ˆ = F ( t x )
∂x 

∂h 
x = x ˆ = H ( t x )time ˆ, (96)∂x 

Namely, matrices F and H are evaluated at x = x ˆ , the estimated values of the state in 
ˆ, ˆ,real time, rather than its nominal values. Note that F ( t x ) and H ( t x ) can not be 

pre-computed in off-line. 

For estimating the output, however, we do not have to use the linearized model; the 
nonlinear output function, eq.(88), can be used: 

ˆ( ( ̂ ( ),t y ) = t t x h ) (97)  

Initial Conditions: x ˆ0 
Initial Conditions: P 0 

yMeasurement 

Update State Estimate with 
Compute Kalman Gain new measurement 

( ( −1 �̂( ˆ( ˆ( )] ), t K ) = t P )H T R t x ) = F t x ) + K [ y − h ( t t x 

)(ˆState Estimate t x 

Update the linearized model: 
Riccati Differential Eq. 

∂f ∂h , H = � −1P = FP + PF T − PH T R HP + GQGT F =
∂x x = x ˆ ∂x x = x ˆ 

Extended Kalman Filter 

A critical issue of this Extended Kalman Filter is instability. As estimated state x ˆ 
deviates from the true state, the linearized model becomes inaccurate, which may lead 
to an even larger error in state estimation. Care must be taken in implementing 
extended Kalman Filter. 
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4.10 Implementation Issues 

Kalman filters have been applied to diverse applications since early 60’s. Various 
implementation techniques have also been developed. There are three known failure 
scenarios in which Kalman filters do not work well: 

a) Unobservable or nearly unobservable processes 
b) Numerical instability 
c) Blind spot 

a) Poor observability 
The above first issue can be checked with the well-known observability condition. 

An alternative, more practical method is to examine the error covariance matrix P(t) 
or Pt. If the process is poorly observable, the variance associated with some 
unobservable state variables blow up. 

If the process is poorly observable, one should change the sensors, or a new sensor 
must be added. 

b) Numerical instability 

Asymmetric covariance: By definition, covariance matrices are symmetry, but 
numerically they may become asymmetric, leading to divergence in recursive 
computation. Suchan asymmetric covariance often comes from the computation of: 

(41)P = (I − H K )Pt t t t t − 1 

n× A A× nwhere Kt ∈ R and Ht ∈ R are not square matrices. Some round off errors yield 
an asymmetric posteriori covariance P , although the a priori covariance P | ist t t − 1 
symmetry. To resolve this problem, it is efficient to use Joseph’s form (40): 

)P = ( I − P KH (I − KH )T + K KR T 
t t t − 1 t 

which is equivalent to (41), as discussed in Section 4.5.2. Note that both terms on the 
right hand side are symmetric matrices. 

U-D Factorization: Since the covariance matrix is a real, symmetric, positive-definite 
matrix, it can be decomposed to the following U-D Factorization form: 

TP = UDU 

 d1 0 " 0   1 * " *
    

#   0 1 * * (98)
D =  

0 
# 

d2 
 , U =  #% # % #  

    
 0 " " dn   0 " 0 1 

where matrix D is a diagonal matrix while matrix U is an upper triangular matrix. 

5 



This particular form assures the positive definiteness of the covariance matrix, and 
implicitly preserves the symmetry of P. Furthermore, if the covariance update formula 
of Kalman filter is converted to the one in the diagonalized space using the upper 
triangular matrix U, the dynamic range of computation reduces to 50 % of the original 
formulation. See more details in Section 9.5 in Brown and Hwang’s textbook. 

c) Blind spot 

Consider another failure scenario: When both process noise and measurement noise 
covariance matrices are deemed to be very small, the state estimation error-covariance 
reduces quickly. This is clear from the Riccati differential equation (62): 

� T T −1 TP = FP + PF − R PH HP + GQG 

as well as from the covariance propagation and update formulae for discrete Kalman 
Tfilter: Pt +1 t = A P A t

T + G Q G , and P = (I − H K )P t t −1 . This implies that the t t t t t t t t 

Kalman gain diminishes quickly. Once the Kalman gain diminishes, the subsequent 
observations are ignored. In other words, the Kalman filter is decoupled from the 
sensors and the real process. This blind spot problem is often triggered by numerical 
round off error in computing covariance matrices as well. 

4.11 Relationship to Wiener Filter 

Prior to Kalman’s work in the early 60’s, N. Wiener made a significant contribution to 
the theory of minimum mean-square error filtering in the 40’s. You can see his picture 
and accomplishments in the display posted at the Infinite Corridor. The table below 
compares Kalman filter and Wiener filter: 

Kalman Filter Wiener Filter 
State space Frequency domain 

Non-stationary Stationary 
Continuous and discrete Continuous 

Since Wiener filter can be seen as a special case of Kalman filter, the fomer can be 
derived from the latter. Assume a stationary, time-invariance process, for which the 
state estimation error covariance in Kalman filter reduces to: 

dP(t P ) → P = const. = 0∞ dt 
T T −1 T0 = FP∞ + F P − R H P HP∞ + GQG (67)∞ ∞ 

Using this, the Kalman filter reduces to 
�x̂ = xF ̂  + K∞ ( y − xH ̂ ) (98)  

where 
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∞K = −1
∞ RHP T .  (99)  

Taking Laplace transform of (98), 

)()(ˆ)(ˆ)(ˆ s y Ks x H Ks x F s x s ∞∞ +−= 

and using (99) yields: 

)(][)(ˆ 111 s y RH P HRH P FsIs x TT ⋅+−= − 
∞ 

−− 
∞ (100) 

The above expression is equivalent to Wiener filter. 
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