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Part 3  System Identification 

Perspective of System Identification Theory 
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Key Questions: 
 
Q1: Is a given data set informative enough to uniquely determine a model from a given    

model set? 
Does Z contain sufficient information to distinguish any two models in M? 

 
Q2: Is merely minimizing )(θNV good enough to obtain the true (unbiased) model? 
 

What if the true model is not involved in the model set? 
How is the model-data fitting influenced by noise characteristics and input 
properties? 

 
Q3: How accurate is the estimated model? 

How much variance, expected error, etc.? 
How much data needed? 

 
How to design experiments 
Key Results 

• Informative experiment and persistent excitation 
• Consistent (unbiased) estimate 
• Signal to noise ration 
• Asymptotic variance 
• Input design: Pseudo Random Binary signal 
• Accuracy-variance trade-off 
• System order estimate: Model selection 
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Mathematical tools for Part 3 system identification 

• Discrete Fourier transform and spectral analysis 
• Central limit theorems 
• Random processes: wide-sense stationary process, ergodic process, etc. 
 

10 Frequency Domain Analysis 

10.1 Discrete Fourier Transform and Power Spectrum  
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Note that ( )X ω  is a 2π -periodic 
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A periodic function can be expanded to a Fourier series expansion. Therefore, we can 
write 
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which means that the inverse transform of ( )X ω  exists: 
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Power Spectrum 
 
 Consider a deterministic, bounded sequence { for which the following limit 
exists: 
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The power spectrum of { is defined as the Fourier transform of auto-covariance 
function
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Inverse Transform: 
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A special case is: 
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Important! We will often use this formula to obtain the mean of a squared signal s(t), a 
special case of 0=τ . 
 
White Noise 
 
We have seen “White Noise” in many sections of the previous lectures.  
We defined {  as a sequence of independent random variables with zero mean values 
and covariance
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Now its characteristics are formally defined using Power Spectrum. 
 
The auto-covariance of the random process e(t) is given by 
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The left hand side of the above expression is a time average, while the right hand side is 
an ensemble average. If these two averages are the same, the process is called ergodic. 
We assume this ergodicity for most of the processes. See the discussion at the end of this 
lecture notes. 
 
For the above equation the Power spectrum is given by 
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The figures below show the plots of the auto-covariance Re( )τ against time and the 
corresponding power spectrum ( )e ωΦ  against frequency. Note that the power spectrum 
plot is constant for the entire frequency. In optics, this means that the light has a uniform 
distribution over the entire wave length, that is, “White”. This is why the random process 
e(t) is called “White Noise”. 
 

 colored random signal can be created with the White noise going through a d
process. The following theorem plays a major role in many of the analyses invo
system identification. 
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Theorem  
Let ( )H q  be the transfer function of a (BIBO) stable process with a White noise

input ( )e t  of variance 
 

λ .  
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The power spectrum is then given by 
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For a stationary signal with spectrum )}({ tω with spectrum )(ωwΦ  
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The power spectrum and cross spectrum are given by 
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10.2 Applying spectral Analysis to System Identificatio
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Two issues to clarify for mathematical rigor 

1) Strictly speaking, the process is not stationary; input 
Therefore, the covariance function
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 Important theories and techniques of system identificatio
spectra of the involved signals, i.e. only the second-order proper
higher-order properties. 
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Deterministic and stochastic processes are mixed. { })(te ,{ })(tv are stochastic processes.  
The covariance function for this type of variable must be given an ensemble mean: 
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If this is equivalent to: 

(21)  ∑
=

∞→
−=

N

tNs tsts
N

R
1

)()(1lim)( ττ  

treatment will be very convenient, since we need to consider only one realization of the 
stochastic process, rather than considering the whole collection of ensemble average.  
This is an ergodicity problem.  For dynamical systems, 
 this ergodicity holds for signals generated through uniformly stable filters  )(qG
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Under this assumption, the theoretical boundary between stochastic and deterministic 
processes is low. 
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