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7 Nonlinear Models 

7.1 Nonlinear Black-Box Models 

The predictor of a linear system: 
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Linear Regression or Pseudo Linear Regression 
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This linear regression or pseudo-linear regression can be extended to representation of a 
class of nonlinear function. To generate a nonlinear map from ϕ  to y, let us consider the 
following function expansion: 
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where )(ϕkg , k = 1,…, m, are basis functions and kα  is the corresponding coordinate. 
 
There are a number of Basis Functions that can be used for (1). They are classified into: 

• Global basis functions 

} • Varying over a large area in the variable space 
• Representing global features 

 Fourier series 
 Volterra series 
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• Local basis functions 
 Neural networks 

Significant variation only in a local area  Radial basis functions 
 Wavelets 

Local basis functions are powerful tools for capturing local features and representing a 
nonlinear function with locally-tunable resolution and accuracy. Over the last few 
decades, local basis functions have been investigated extensively and have been applied 
to a number of system identification, learning, and control problems. We will focus on 
local basis functions for the following few lectures. 

7.2 Local Basis Functions 

We begin with a problem to approximate a scalar nonlinear function, 
RxRyxgy ∈∈= ,),(0 , with a group of basis functions, ),;( kkk xKg γβ= , each of 

which covers only a local interval of axis x. See the figure below. 
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The original nonlinear 
function )(0 xgy =  

x 

Varying only in a local area 

All the basis functions )(ϕkg  , k = 1,…,m are generated from a single mother function of 
a single input variable, i.e. univariate: ),;( kkxK γβ . 
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                                                            Scale, dilation 
where parameter kγ  determines the center position,  

and parameter kβ  determines the scale of the local 
basis function. 
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Placing these local basis functions at m different points along the x axis with appropriate 
scale factors, we want to approximate the original nonlinear function to the following 
form: 
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A simple case is to use the same Gaussian bell functions, i.e. ββ =k , and place it at m 
equally-spaced points between x = a and x = b, where the given nonlinear function is 
defined: . It can be shown based on Function Approximation Theory that a 
large class of nonlinear functions can be approximated to any accuracy with this group of 
Gaussian bell functions. Not only Gaussian bell functions, but also many other basis 
functions satisfying mild conditions can be used for the local basis functions.  
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Function Approximation Theory 
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Many mathematicians, including Kolmogorov, have worked on this problem and have 
extended the approximation throry to a large class of nonlinera functions, g0(x), and a 
large class of basis functions. Professor Tomaso Poggio has written an excellent survey 
paper on this topic.1
 
The challenge of this function approximation is to minimize the number of basis 
functions while approximating a given nonlinear function to the same accuracy. It is 
interesting to know that the number of basis functions reduces quite significantly when 
they are placed more effectively at specific areas rather than placing them at fixed grids, 

 
 

Features of local basis functions 
• Multi-resolution 
• Locally tunable 
• (More stable in tuning) 

 
 
 
 
 
 
 

                                                 
1 Poggio, T. and F. Girosi. Notes on PCA, Regularization, Sparsity and Support Vector Machines, 
CBCL Paper #161/AI Memo #1632, Massachusetts Institute of Technology, Cambridge, MA, April 
1998. 

Low 
Resolution High Resolution 
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There are a number of local basis functions that have been used for diverse applications. 
They can be classified into three types. 
 
 
1) Linear Combination type 
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used for the perceptron multi-layer neural network. 
All the regression vectors ϕ  involved in the  
hyperplane are mapped to the same value of ; kx
The bases function is not localized. )( kk xg
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2) Distance type 
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Locallized. Radial Basis Functions 
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7.3 Non-Adaptive Tuning of Local Basis Function Networks 

In the neural network community, parameter tuning or parameter estimation is called 
learning or training. ( They tend to use colorful English!) 
 
Parameters to tune 
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Data (Training Data) 

Regression and corresponding true outputs 
)()1( Nϕϕ …              )()1( Nyy …

 
 
The scale parameters kβ  and the location parameters kγ are fixed; only coordinates kα  
are learned from the input-output data 
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                                                       Pre-determined                    A type of linear regression 
 
This is a linear problem. The Least Squares estimate is applicable. 
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Collectively arranging this vector )(ϕg for all the training data, 
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between the two. 
The problem is to find α that minimizes the squared error of the above predictor 
compared with the true values (training data) ( ) ( )[ ]TNyyY "1= . 

2
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The solution is  
( ) YT ΦΦΦ=

−1
α̂          (11) 

The Recursive Least Square (RLS) algorithm is also applicable. TLS is particularly useful 
for on-line learning as well as for dealing with a large number of training data. 
Substituting (11) into (9) yields 
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Where  called the equivalent Kernel. ( ) ( ) ( )()()(, 1 iggiS TT ϕϕϕϕ
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7.4 Adaptive Tuning Methods for radial Basis Function networks 
 

• Allow to tune kβ and kγ (scale and location parameters) together with the 
coordinator kα by using both )(iϕ and , the training data. )(iy

• Allow to allocate local basis function more effectively to areas needing higher 
resolution. 

• Since kα , kβ and kγ are non-linearly involved in (9), adaptive methods are highly 
non-linear. 

 
The following is an example of adaptive method: Radial Basis Function (RBF) Networks 
 
The formula of RBF network is given by: 
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where the mother basis function is the Gaussian bell, multi-quadratic function. The bias 
term 0α can be treated as a special case of ∞=β . 
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Question: How to determine kβ and kγ ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At fixed grid points More basis functions at more densely 
populated areas 

 
Allocation of the basis functions is a type of clustering problem or a vector quantization 
problem. 
 
The Generalized Lloyd Algorithm (GLA) is a well-known technique. 

 
Problem:   

Given the number of clusters (basis functions), m; initial locations of the m center 
points, )0()0(1 mγγ " ; and data )()1( Nϕϕ " ; Find optimal center points that 
minimize the mean squared distance between each center point kγ and individual data 
points )(iϕ involved in the same cluster, k. 
 

Algorithm 
 
Set iteration number l to 1. 
 
Step 1.  Find the nearest center for each data point )(iϕ  
and store the results in an  matrix mN × { }ijqQ = , whose 
element is defined by 

⎩
⎨
⎧ −=

= ≤≤

elsewhere
lijif

q kmkij 0
)()(minarg1

1
γϕ

  

          (15) 
 

 

2ϕ  

1ϕ  

)2(ϕ
)1(ϕ  

 

)0(2γ  
)0(1γ  

 7



Nearest center point to )(iϕ : 

 
Step 2.  Compute the centroid of the data points )(iϕ  classified to the same cluster 
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Step 3. Set  and repeat steps 1-2 until the mean squared distance converges 
to a local minimum. 
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The scale (dilation) parameter kβ , called a receptive width, determines the 

smoothness of the approximation function as well as data fitting accuracy. 
 
A heuristic method for determining the receptive width (variance) is given by 
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Selection of kβ  is a trade-off problem between fitting accuracy and smoothness. It is 
interpreted as the degree of generalization. 
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Set 1+= AA  and repeat 
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