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Abstract. The function sin x is very important in mathematics 
and has many applications. In addition to its series expansion, it 
can also be written as an infinite product. The infinite product of 
sin x can be used to prove certain values of ζ(s), such as ζ(2) and 
ζ(4). The gamma function is related directly to the sin x function 
and can be used to prove the infinite product expansion. Also used 
are Weierstrass’ product formula and Legendre’s relation. 

1. Introduction 

There are a few special functions in mathematics that have particular 
significance and many applications. The gamma function is one of 
those functions. The gamma function can be defined as 

∞ 

Γ(x) = e−ttx−1dt. 
0 

We can also get the formula 

(1) Γ(x + 1) = xΓ(x) 

by replacing x with x + 1 and integrating by parts. 

In addition, since Γ(1) = 1, using Equation (1), by induction, we can 
relate the gamma function to the factorial formula 

(2) Γ(n) = (n − 1)!. 

The gamma function has the properties that it is log convex and mono­
tonic, which will be used in a later proof. 

Another important function in mathematics is the sine function. The 
trigonometric function sin x can be written as an infinite series 

3 5 7x x x
sin x = x − 

3! 
+ 

5! 
− 

7! 
+ ... 
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The function sin x can also be written as an infinite product expansion. 
The gamma function is directly related to the sine function. To derive 
the infinite product expansion of the sine function, the Weierstrass 
product formula, Legendre relation, and the gamma function are all 
used. 

The sine product formula is important in mathematics because it has 
many applications, including the proofs of other problems. One such 
application is the calculation of the values of ζ(2) and ζ(4), where �∞ 1 1 1 1 

ζ(s) = = 1 + + + + ... 
ns 2s 3s 4s 

n=1 

is the Riemann zeta function. 

Section 2 derives Weierstrass’ product formula and Euler’s constant. 
Section 3 introduces Stirling’s formulas, Gauss’ multiplication formula, 
and the Legendre relation. In Section 4, the sine product formula is 
produced from the gamma function. Finally, Section 5 discuss the 
applications of the sine product formula, including the calculation of 
ζ(2) and ζ(4). 

2. Weierstrass’ product formula 

Weierstrass derived a formula which, when applied to the gamma 
function, can be used to prove the sine product formula. To find Weier­
strass’ product formula, we first begin with a theorem. 

Theorem 2.1. The function Γ(x) is equal to the limit as n goes to 
infinity of 

nxn! 
(3) Γ(x) = lim . 

n→∞ x(x + 1) (x + n)· · · 

Proof. Begin with a difference quotient expressed as the inequality 

log Γ(−1 + n) − log Γ(n) log Γ(x + n) − log Γ(n) log Γ(1 + n) − log Γ(n) 
. 

(−1 + n) − n 
≤ 

(x + n) − n 
≤ 

(1 + n) − n 

This inequality is true because of the gamma functions properties that 
it is monotonically increasing and log convex. Substitute for Γ(n) using 
Equation (2) and simplify to get 

log(n − 1) ≤ 
log Γ(x + n) − log(n − 1)! ≤ log n. 

x 
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Rearrange the terms of the inequality and since the logarithm is a 
monotonically increasing function, we get 

(n − 1)x(n − 1)! ≤ Γ(x + n) ≤ n x(n − 1)!. 

Using Equation (1), we know that Γ(x + n) = (x + n − 1)(x + n −
2) (x + 1)xΓ(x). Substituting it into the inequality gives us · · · 

(n − 1)x(n − 1)! nxn! x + n
. 

(x + n − 1) 
≤ Γ(x) ≤

x(x + 1) x(x + 1) (x + n) n· · · · · · 
If we replace n with n + 1 on the left hand side and then rearrange the 
inequality, we get 

n nxn! 
Γ(x) 

x + n 
≤ 

x(x + 1) (x + n) 
≤ Γ(x). 

· · · 
Taking the limit as n →∞ gives us 

nxn! 
Γ(x) = lim . 

n→∞ x(x + 1) (x + n)· · · 

Equation (3) was derived by Gauss. From there, Weierstrass was 
able to derive another form of the same equation 

x(log n−1/1−1/2−...−1/n) 1 ex/1 ex/2 ex/n 

Γ(x) = e . 
x 1 + x/1 

· 
1 + x/2 

· · · 
1 + x/n 

The limit of 
1 1 1 

lim ( + + + 
n 
− log n) 

n→∞ 1 2 
· · · 

exists, is equal to C, and is often called Euler’s constant. So we can 
rewrite Weierstrass’ product formula as � x/i1 

∞
e

(4) Γ(x) = e−Cx . 
x 1 + x/i

i=1 

3. Multiplication Formula 

There are three formulas, 

Γ(x) = 
√

2πxx−1/2 e−x+µ(x), where 
∞

1 1 θ 
µ(x) = (x + n + ) log(1 + ) − 1 = , and 

2 x + n 12x 
n=0 

e−n+θ/12n n! = 
√

2πnn+1/2 , 
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which are known as Stirling’s formulas. Where θ is a number inde­
pendent of other values and where 0 ≤ θ ≤ 1. Stirling’s formulas are 
approximations of Γ(x) for large values of x and the accuracy increases 
as x increases. 

Gauss discovered a formula, which expresses Γ(x) as a product of its 
factors. Gauss’ multiplication formula is 

(2π)(p−1)/2 x x + 1 x + p − 1 
(5) Γ(x) = Γ( )Γ( ) Γ( ), 

px−1/2 p p 
· · · 

p 

where p is a positive integer. 

There is the special case discovered by Legendre, where p = 2, which 
is called Legendre’s relation. Legendre’s relation states 

x x + 1 
√

π 
(6) Γ( )Γ( ) = Γ(x). 

2 2 2x−1 

The derivation and proof of these formulas can be found at [1]. They 
are based on finding an approximation for Γ(x) in terms of an estimate 
for n!. 

4. The Sine and and Gamma Functions 

To derive the sine product formula, we first find a relationship be­
tween the sine and gamma functions. We define a function φ(x) and 
find that φ(x + 1) = φ(x). 

Theorem 4.1. Define the function φ(x), for nonintegral x, to be 

(7) φ(x) = Γ(x)Γ(1 − x) sin πx, 

then φ(x + 1) = φ(x). 

Proof. If we use Equation (1) and substitute −x + 1 for x, then we get 
that 

(8) Γ(−x + 1) = −xΓ(−x). 

Finding φ(x + 1), we get 

φ(x + 1) = Γ(x + 1)Γ(−x) sin(π(x + 1)). 

Note that sin(πx+π) = − sin πx. Use Equation (1), rearrange Equation 
(8), and substitute them in to get 

φ(x + 1) = xΓ(x)
Γ(−x + 1) 

(− sin πx) = Γ(x)Γ(−x + 1) sin πx. 
−x 

This is equal to the original equation for φ(x), so φ(x+1) = φ(x). � 
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The Legendre relation (Equation (6)) can be written as 

x x + 1 
Γ( )Γ( ) = b2−xΓ(x),

2 2 

where b = 2
√

π is a constant. Replacing x with 1 − x gives 

x 
Γ(

1 − x 
)Γ(1 − ) = b2x−1Γ(1 − x). 

2 2


From there, we get that


φ( 
x 

)φ( 
x + 1 

) = Γ( 
x 

)Γ(1 − 
x 

) sin 
πx 

Γ( 
x + 1 

)Γ(
1 − x 

) cos 
πx 

. 
2 2 2 2 2 2 2 2 

Simplifying the above, we find 

x x + 1 b2 b2 

φ( )φ( ) = Γ(x)Γ(1 − x) sin πx = φ(x) = cφ(x)
2 2 4 4 

where c = b2 
is a constant. 

4 

Using Equation (1) and the infinite series expansion of sin x, we get 
that 

(πx)3 (πx)5 (πx)7Γ(1 + x)
φ(x) = Γ(1 − x) πx −

x 
+
 + ...
−


3! 5!
 7!


π3x2 π5x4 π7x6 

= Γ(1 + x)Γ(1 − x) π − 
3! 

+ 
5! 

− 
7! 

+ ... . 

The right hand side of the equation equals π when x = 0. From there 
we see that φ(0) = π. Let g(x) be a periodic function that is equal 
the second derivative of log φ(x). It is periodic because log φ(x) = 
log(Γ(x)Γ(1 − x) sin πx) is periodic and so the second derivative will 
also be periodic. Since g(x) is periodic, then it satisfies the equation 

1 x x + 1 
(9) g(x) = (g( ) + g( )). 

4 2 2 
Since g(x) is continuous on the interval 0 ≤ x ≤ 1, it is bounded by a 
constant M , |g(x)| ≤ M . Because g(x) is periodic, it is bounded by M 
for all x. From Equation (9), we get that 

) 

MFrom this we see that g(x) can actually be bounded by 
2 . We can 

continue to repeat this process until the bound of g(x) goes to 0. There­
fore g(x) = 0, which means that log φ(x) is a linear function, because 
g(x) = 0 is its second derivative. Since log φ(x) is periodic, this implies 

1
 x + 1
 M
x

g(x)
 g( )
 g(
+
|
 | ≤
 .≤ 

24
 2
 2
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that it is a constant, which also implies that φ(x) is constant. We know 
that φ(0) = π and therefore φ(x) must equal π for all x. 

Rearranging Equation (7) and using the fact that φ(x) = π,

π


Γ(x)Γ(1 − x) = . 
sin πx 

Using (1), the above equation can be rewritten as 
π 

sin πx =	 . 
−xΓ(x)Γ(−x) 

The Weierstrass product formula allows us to replace the gamma func­
tion and rewrite sin πx as an infinite product expansion � 2∞

x
(10)	 sin πx = πx 1 − 

i2 
. 

i=1 

5. Applications of the Sine Product Formula 

Applications of the sine product formula include the calculation of 
certain values of the Riemann zeta function. The proof that ζ(2) = 
π2/6 is often called Euler’s Theorem. 

Theorem 5.1. The sum of the reciprocal of the perfect squares is π2/6: 
∞

1 π2 

= . 
n2 6 

1 

Proof. Consider the function sin x = 0, which has an infinite number 
of roots ±π, ±2π, ±3π, .... Using the infinite series expansion of sin x 
and dividing sin x by x gives us the infinite series 

2 4 6x x x
(11) 1 − 

3! 
+ 

5!	
− 

7! 
+ ... = 0. 

Applying Equation (10) and dividing by πx, we get the infinite product 
expansion 

sin x x2 x2 x2 

(12)	 = (1 − )(1 − )(1 − )... 
x π2 4π2 9π2 

When Equation (12) is expanded, the coefficient of x2 will be

1 1 1


+ + + ... 
π2 4π2 9π2 

Using Equation (11), we get 
1 1 1 1 

+ + + ... = . 
π2 4π2 9π2 3! 



� 

� 

� � 

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION 7 

Multiplying both sides of the equation by π2 gives us 

1 1 1 π2 

+ + + ... = . 
12 22 32 6 

Using a similar method, we can also calculate ζ(4), which is the sum 
of the reciprocals of numbers to the fourth power. 

Theorem 5.2. The value of ζ(4) is π4/90: 
∞

1 π4 

= . 
n4 90 

1 

Proof. From the calculation of ζ(2), we know that 

�∞ 1 1 
(13)	 = . 

i2π2 6 
i=1 

If we square Equation (13), we get that 

� �2�∞ 1 1 
(14)	 = . 

i2π2 62 
i=1 

Expanding the left hand side of Equation (14) we get 

� �2∞
1 1 � 1 

(15)	
i2π2 

= 
i4π4 

+ 2 
i2j2π4 

. 
i=1 i<j 

If we use the sine infinite product expansion, Equation (12), we get 
that the coefficient of x4 for sin 

x
x is equal to the sum of the product of 

i2
x
π

2

2 . In other words, the coefficient of x4 is 

� 1 
. 

i2j2π4 
i<j 

From Equation (11), we also know that the coefficient of x4 must be 
1 , so 

120 
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� 1 1 
(16) = . 

i2j2π4 120 
i<j 

Therefore, substituting Equation (16) into Equation (15) gives us 

� �2 � �∞
1 1 1 1 

= = + 2 . 
i2π2 36 i4π4 120 

i=0 

To calculate ζ(4), simply solve for 
i4

1 
π4 and multiply both sides by 

π4, to get 

∞
1 π4 

= . 
i4 90 

i=1 
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