
We're going to start. We are going to start studying today, and for quite a while, the 
linear second-order differential equation with constant coefficients. In standard form, 
it looks like, there are various possible choices for the variable, unfortunately, so I 
hope it won't disturb you much if I use one rather than another. I'm going to write it 
this way in standard form. I'll use y as the dependent variable. Your book uses little 
p and little q. I'll probably switch to that by next time. But, for today, I'd like to use 
the most neutral letters I can find that won't interfere with anything else. So, of 
course call the constant coefficients, respectively, capital A and capital B. 

I'm going to assume for today that the right-hand side is zero. So, that means it's 
what we call homogeneous. The left-hand side must be in this form for it to be 
linear, it's second order because it involves a second derivative. These coefficients, A 
and B, are understood to be constant because, as I said, it has constant coefficients. 
Of course, that's not the most general linear equation there could be. In general, it 
would be more general by making this a function of the dependent variable, x or t, 
whatever it's called. Similarly, this could be a function of the dependent variable. 
Above all, the right-hand side can be a function of a variable rather than simply zero. 
In that case the equation is called inhomogeneous. 

But it has a different physical meaning, and therefore it's customary to study that 
after this. You start with this. This is the case we start with, and then by the middle 
of next week we will be studying more general cases. But, it's a good idea to start 
here. Your book starts with, in general, some theory of a general linear equation of 
second-order, and even higher order. I'm asking you to skip that for the time being. 

We'll come back to it next Wednesday, it two lectures, in other words. I think it's 
much better and essential for your problems at for you to get some experience with 
a simple type of equation. And then, you'll understand the general theory, how it 
applies, a lot better, I think. So, let's get experience here. The downside of that is 
that I'm going to have to assume a couple of things about the solution to this 
equation, how it looks; I don't think that will upset you too much. 

So, what I'm going to assume, and we will justify it in a couple lectures, that the 
general solution, that is, the solution involving arbitrary constants, looks like this. y 
is equal-- The arbitrary constants occur in a certain special way. There is c1 y1 + c2 
y2. So, these are two arbitrary constants corresponding to the fact that we are 
solving a second-order equation. In general, the number of arbitrary constants in the 
solution is the same as the order of the equation because if it's a second-order 
equation because if it's a second-order equation, that means somehow or other, it 
may be concealed. But you're going to have to integrate something twice to get the 
answer. And therefore, there should be two arbitrary constants. 

That's very rough, but it sort of gives you the idea. Now, what are the y1 and y2? 
Well, as you can see, if these are arbitrary constants, if I take c2 to be zero and c1 
to be one, that means that y1 must be a solution to the equation, and similarly y2. 
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So, where y1 and y2 are solutions. Now, what that shows you is that the task of 
solving this equation is reduced, in some sense, to finding just two solutions of it, 
somehow. All we have to do is find two solutions, and then we will have solved the 
equation because the general solution is made up in this way by multiplying those 
two solutions by arbitrary constants and adding them. So, the problem is, where do 
we get that solutions from? 

But, first of all, or rather, second or third of all, the initial conditions enter into the, I 
haven't given you any initial conditions here, but if you have them, and I will 
illustrate them when I work problems, the initial conditions, well, the initial values 
are satisfied by choosing c1 and c2, are satisfied by choosing c1 and c2 properly. So, 
in other words, if you have an initial value problem to solve, that will be taken care 
of by the way those constants, c, enter into the solution. Okay, without further ado, 
there is a standard example, which I wish I had looked up in the physics syllabus for 
the first semester. Did you study the spring-mass-dashpot system in 8.01? 

I'm embarrassed having to ask you. You did? Raise your hands if you did. Okay, that 
means you all did. Well, just let me draw an instant picture to remind you. So, this is 
a two second review. I don't know how they draw the picture. Probably they don't 
draw picture at all. They have some elaborate system here of the thing running back 
and forth. Well, in the math, we do that all virtually. 

So, here's my system. That's a fixed thing. Here's a little spring. And, there's a little 
car on the track here, I guess. So, there's the mass, some mass in the little car, and 
motion is damped by what's called a dashpot. A dashpot is the sort of thing, you see 
them in everyday life as door closers. They're the thing up above that you never 
notice that prevent the door slamming shut. So, if you take one apart, it looks 
something like this. So, that's the dash pot. It's a chamber with a piston. This is a 
piston moving in and out, and compressing the air, releasing it, is what damps the 
motion of the thing. So, this is a dashpot, it's usually called. 

And, here's our mass in that little truck. And, here's the spring. And then, the 
equation which governs it is, let's call this x. I'm already changing, going to change 
the dependent variable from y to x, but that's just for the sake of example, and 
because the track is horizontal, it seems more natural to call it x. There's some 
equilibrium position somewhere, let's say, here. That's the position at which the 
mass wants to be, if the spring is not pulling on it or pushing on it, and the dashpot 
is happy. I guess we'd better have a longer dashpot here. So, this is the equilibrium 
position where nothing is happening. When you depart from that position, then the 
spring, if you go that way, the spring tries to pull the mass back. 

If it goes on the site, the spring tries to push the mass away. The dashpot, 
meanwhile, is doing its thing. And so, the force on the, m x''. That's by Newton's law, 
the force, comes from where? Well, there's the spring pushing and pulling on it. That 
force is opposed. If x gets to be beyond zero, then the spring tries to pull it back. If 
it gets to the left of zero, if x gets to be negative, that that spring force is pushing it 
this way, wants to get rid of the mass. So, it should be minus kx, and this is from 
the spring, the fact that is proportional to the amount by which x varies. So, that's 
called Hooke's Law. Never mind that. This is a law. 

That's a law, Newton's law, okay, Newton, Hooke with an E, and the dashpot 
damping is proportional to the velocity. It's not doing anything if the mass is not 
moving, even if it's stretched way out of its equilibrium position. So, it resists the 



velocity. If the thing is trying to go that way, the dashpot resists it. It's trying to go 
this way, the dashpot resists that, too. It's always opposed to the velocity. And so, 
this is a dash pot damping. I don't know whose law this is. So, it's the force coming 
from the dashpot. And, when you write this out, the final result, therefore, is it's mx'' 
+ cx' + kx = 0. And now, that's still not in standard form. To put it in standard form, 
you must divide through by the mass. 

And, it will now read like this, plus k divided by m times x equals zero. And, that's 
the equation governing the motion of the spring. I'm doing this because your 
problem set, problems three and four, ask you to look at a little computer visual 
which illustrates a lot of things. And, I didn't see how it would make, you can do it 
without this interpretation of spring-mass-dashpot, -- -- but, I think thinking of it of 
these constants as, this is the damping constant, and this is the spring, the constant 
which represents the force being exerted by the spring, the spring constant, as it's 
called, makes it much more vivid. So, you will note is that those problems are 
labeled Friday or Monday. Make it Friday. You can do them after today if you have 
the vaguest idea of what I'm talking about. 

If not, go back and repeat 8.01. So, all this was just an example, a typical model. 
But, by far, the most important simple model. Okay, now what I'd like to talk about 
is the solution. What is it I have to do to solve the equation? So, to solve the 
equation that I outlined in orange on the board, the ODE, our task is to find two 
solutions. Now, don't make it too trivial. There is a condition. The solution should be 
independent. All that means is that y2 should not be a constant multiple of y1. 

I mean, if you got y1, then two times y1 is not an acceptable value for this because, 
as you can see, you really only got one there. You're not going to be able to make up 
a two parameter family. So, the solutions have to be independent, which means, to 
repeat, that neither should be a constant multiple of the other. They should look 
different. That's an adequate explanation. Okay, now, what's the basic method to 
finding those solutions? Well, that's what we're going to use all term long, 
essentially, studying equations of this type, even systems of this type, with constant 
coefficients. The basic method is to try y equals an exponential. Now, the only way 
you can fiddle with an exponential is in the constant that you put up on top. So, I'm 
going to try y = e^(rt). 

Notice you can't tell from that what I'm using as the independent variable. But, this 
tells you I'm using t. And, I'm switching back to using t as the dependent variable. 
So, T is the independent variable. Why do I do that? The answer is because 
somebody thought of doing it, probably Euler, and it's been a tradition that's handed 
down for the last 300 or 400 years. Some things we just know. All right, so if I do 
that, as you learned from the exam, it's very easy to differentiate exponentials. 
That's why people love them. It's also very easy to integrate exponentials. And, half 
of you integrated instead of differentiating. So, we will try this and see if we can pick 
r so that it's a solution. 

Okay, well, I will plug in, then. Substitute, in other words, and what do we get? Well, 
for y double prime, I get r^2 e^(rt). That's y'' because each time you differentiate it, 
you put an extra power of r out in front. But otherwise, do nothing. The next term 
will be r times, sorry, I forgot the constant. Capital A r e^(rt), and then there's the 
last term, B times y itself, which is B e^(rt). And, that's supposed to be equal to 
zero. So, I have to choose r so that this becomes equal to zero. Now, you see, the 
e^(rt) occurs as a factor in every term, and the e^(rt) is never zero. And therefore, 



you can divide it out because it's always a positive number, regardless of the value 
of t. 

So, I can cancel out from each term. And, what I'm left with is the equation r^2 + ar 
+ b = 0. We are trying to find values of r that satisfy that equation. And that, dear 
hearts, is why you learn to solve quadratic equations in high school, in order that in 
this moment, you would be now ready to find how spring-mass systems behave 
when they are damped. 

This is called the characteristic equation. The characteristic equation of the ODE, or 
of the system of the spring mass system, which it's modeling, the characteristic 
equation of the system, okay? Okay, now, we solve it, but now, from high school you 
know there are several cases. And, each of those cases corresponds to a different 
behavior. And, the cases depend upon what the roots look like. The possibilities are 
the roots could be real, and distinct. That's the easiest case to handle. The roots 
might be a pair of complex conjugate numbers. 

That's harder to handle, but we are ready to do it. And, the third case, which is the 
one most in your problem set is the most puzzling: when the roots are real, and 
equal. And, I'm going to talk about those three cases in that order. So, the first case 
is the roots are real and unequal. If I tell you they are unequal, and I will put down 
real to make that clear. Well, that is by far the simplest case because immediately, 
one sees we have two roots. They are different, and therefore, we get our two 
solutions immediately. So, the solutions are, the general solution to the equation, I 
write down without further ado as y = c1 e^(r1 t) + c2 e^(r2 t). 

There's our solution. Now, because that was so easy, and we didn't have to do any 
work, I'd like to extend this case a little bit by using it as an example of how you put 
in the initial conditions, how to put in the c. So, let me work a specific numerical 
example, since we are not going to try to do this theoretically until next Wednesday. 
Let's just do a numerical example. So, suppose I take the constants to be the 
damping constant to be a four, and the spring constant, I'll take the mass to be one, 
and the spring constant to be three. So, there's more damping here, damping force 
here. You can't really talk that way since the units are different. 

But, this number is bigger than that one. That seems clear, at any rate. Okay, now, 
what was the characteristic equation? Look, now watch. Please do what I do. I've 
found in the past, even by the middle of the term, there are still students who feel 
that they must substitute y = e^(rt), and go through that whole little derivation to 
find that you don't do that. It's a waste of time. 

I did it that you might not ever have to do it again. Immediately write down the 
characteristic equation. That's not very hard. r^2 + 4r + 3 = 0. And, if you can write 
down its roots immediately, splendid. But, let's not assume that level of competence. 
So, it's (r + 3)(r + 1) = 0. Okay, you factor it. 

This being 18.03, a lot of the times the roots will be integers when they are not, God 
forbid, you will have to use the quadratic formula. But here, the roots were integers. 
It is, after all, only the first example. So, the solution, the general solution is y = c1 
e^(-3t) + c2 e^(-t). 

Now, suppose it's an initial value problem. So, I gave you an initial condition. 
Suppose the initial conditions were that y(0) = 1. So, at the start, the mass has been 



moved over to the position, one, here. Well, we expected it, then, to start doing 
that. But, this is fairly heavily damped. This is heavily damped. I'm going to assume 
that the mass starts at rest. So, the spring is distended. The masses over here. But, 
there's no motion at times zero this way or that way. In other words, I'm not 
pushing it. I'm just releasing it and letting it do its thing after that. Okay, y'(0) = 0. 
So, it starts at rest, but in the extended position, one unit to the right of the 
equilibrium position. Now, all you have to do is use these two conditions. 

Notice I have to have two conditions because there are two constants I have to find 
the value of. All right, so, let's substitute, well, we're going to have to calculate the 
derivative. So, why don't we do that right away? So, this is -3 c1 e^(-3t) - c2 e^(-t). 
And now, if I substitute in at zero, when t equals zero, what do I get? Well, the first 
equation, the left says that y(0) = 1. And, the right says this is one. So, it's c1 + c2. 
That's the result of substituting t = 0. How about substituting? What should I 
substitute in the second equation? Well, y'(0) = 0. So, if the second equation, when I 
put in t equals zero, the left side is zero according to that initial value, and the right 
side is -3c1 - c2. 

You see what you end up with, therefore, is a pair of simultaneous linear equations. 
And, this is why you learn to study linear set of pairs of simultaneous linear 
equations in high school. These are among the most important. Solving problems of 
this type are among the most important applications of that kind of algebra, and this 
kind of algebra. All right, what's the answer finally? Well, if I add the two of them, I 
get -2c1 = 1. So, c1 = -1/2. And, if c1 is minus a half, then c2 = -3c1. So, c2 = 3/2. 

The final question is, what does that look like as a solution? Well, in general, these 
combinations of two exponentials aren't very easy to plot by yourself. That's one of 
the reasons you are being given this little visual which plots them for you. All you 
have to do is, as you'll see, set the damping constant, set the constants, set the 
initial conditions, and by magic, the curve appears on the screen. 

And, if you change either of the constants, the curve will change nicely right along 
with it. So, the solution is y = -1/2 e^(-3t) + 3/2 e^(-t). How does it look? Well, I 
don't expect you to be able to plot that by yourself, but you can at least get started. 
It does have to satisfy the initial conditions. That means it should start at one, and 
its starting slope is zero. So, it starts like that. 

These are both declining exponentials. This declines very rapidly, this somewhat 
more slowly. It does something like that. If this term were a lot, lot more negative, I 
mean, that's the way that particular solution looks. How might other solutions look? 
I'll draw a few other possibilities. If the initial term, if, for example, the initial slope 
were quite negative, well, that would have start like this. 

Now, just your experience of physics, or of the real world suggests that if I give, if I 
start the thing at one, but give it a strongly negative push, it's going to go beyond 
the equilibrium position, and then come back again. But, because the damping is big, 
it's not going to be able to get through that. The equilibrium position, a second time, 
is going to look something like that. Or, if I push it in that direction, the positive 
direction, that it starts off with a positive slope. But it loses its energy because the 
spring is pulling it. It comes and does something like that. So, in other words, it 
might go down. Cut across the equilibrium position, come back again, it do that? No, 
that it cannot do. I was considering giving you a problem to prove that, but I got 



tired of making out the problems set, and decided I tortured you enough already, as 
you will see. 

So, anyway, these are different possibilities for the way that can look. This case, 
where it just returns in the long run is called the over-damped case, over-damped. 
Now, there is another case where the thing oscillates back and forth. We would 
expect to get that case if the damping is very little or nonexistent. Then, there's very 
little preventing the mass from doing that, although we do expect if there's any 
damping at all, we expect it ultimately to get nearer and nearer to the equilibrium 
position. Mathematically, what does that correspond to? Well, that's going to 
correspond to case two, where the roots are complex. 

The roots are complex, and this is why, let's call the roots, in that case we know that 
the roots are of the form a plus or minus bi. There are two roots, and they are a 
complex conjugate. All right, let's take one of them. What does a correspond to in 
terms of the exponential? Well, remember, the function of the r was, it's this r when 
we tried our exponential solution. So, what we formally, this means we get a 
complex solution. The complex solution y = e^((a + bi)t). The question is, what do 
we do that? We are not really interested, I don't know what a complex solution to 
that thing means. It doesn't have any meaning. What I want to know is how y 
behaves or how x behaves in that picture. 

And, that better be a real function because otherwise I don't know what to do with it. 
So, we are looking for two real functions, the y1 and the y2. But, in fact, what we've 
got is one complex function. All right, now, a theorem to the rescue: this, I'm not 
going to save for Wednesday because it's so simple. So, the theorem is that if you 
have a complex solution, u plus iv, so each of these is a function of time, u plus iv is 
the complex solution to a real differential equation with constant coefficients. Well, it 
doesn't have to have constant coefficients. It has to be linear. Let me just write it out 
to y'' + Ay' + By = 0. 

Suppose you got a complex solution to that equation. These are understood to be 
real numbers. They are the damping constant and the spring constant. Then, the 
conclusion is that u and v are real solutions. In other words, having found a complex 
solution, all you have to do is take its real and imaginary parts, and voila, you've got 
your two solutions you were looking for for the original equation. 

Now, that might seem like magic, but it's easy. It's so easy it's the sort of theorem I 
could spend one minute proving for you now. What's the reason for it? Well, the 
main thing I want you to get out of this argument is to see that it absolutely depends 
upon these coefficients being real. You have to have a real differential equation for 
this to be true. Otherwise, it's certainly not. So, the proof is, what does it mean to be 
a solution? It means when you plug in A(u + iv), plus B(u + iv), what am I supposed 
to get? Zero. Well, now, separate these into the real and imaginary parts. What does 
it say? It says u'' + Au' + Bu, that's the real part of this expression when I expand it 
out. 

And, I've got an imaginary part, too, which all have the coefficient i. So, from here, I 
get (v'' + Av' + Bv). So, this is the imaginary part. Now, here I have something with 
a real part plus the imaginary part, i, times the imaginary part is zero. Well, the only 
way that can happen is if the real part is zero, and the imaginary part is separately 
zero. 



So, the conclusion is that therefore this part must be zero, and therefore this part 
must be zero because the two of them together make the complex number zero plus 
zero i. Now, what does it mean for the real part to be zero? It means that u is a 
solution. This, the imaginary part zero means v is a solution, and therefore, just 
what I said. u and v are solutions to the real equation. Where did I use the fact that 
A and B were real numbers and not complex numbers? In knowing that this is the 
real part, I had to know that A was a real number. If A = 1 + i, I'd be screwed, I 
mean, because then I couldn't say that this was the real part anymore. 

So, saying that's the real part, and this is the imaginary part, I was using the fact 
that these two numbers, constants, were real constants: very important. So, what is 
the case two solution? Well, what are the real and imaginary parts of (a + bi)t? 
Well,y = e^(at + ibt). Okay, you've had experience. You know how to do this now. 
That's e^(at) times, well, the real part is, well, let's write it this way. The real part is 
e^(at) cos(bt). Notice how the a and b enter into the expression. That's the real 
part. And, the imaginary part is e^(at) sin(bt). 

And therefore, the solution, both of these must, therefore, be solutions to the 
equation. And therefore, the general solution to the ODE is y equals, now, you've got 
to put in the arbitrary constants. It's a nice thing to do to factor out the e^(at). It 
makes it look a little better. And so, the constants are c1 cosine bt and c2 sine bt. 
Yeah, but what does that look like? Well, you know that too. This is an exponential, 
which controls the amplitude. But this guy, which is a combination of two sinusoidal 
oscillations with different amplitudes, but with the same frequency, the b's are the 
same in both of them, and therefore, this is, itself, a purely sinusoidal oscillation. 

So, in other words, I don't have room to write it, but it's equal to, you know. It's a 
good example of where you'd use that trigonometric identity I spent time on before 
the exam. Okay, let's work a quick example just to see how this works out. Well, 
let's get rid of this. Okay, let's now make the damping, since this is showing 
oscillations, it must correspond to the case where the damping is less strong 
compared with the spring constant. So, the theorem is that if you have a complex 
solution, u plus iv, so each of these is a function of time, u + iv is the complex 
solution to a real differential equation with constant coefficients. A stiff spring, one 
that pulls with hard force is going to make that thing go back and forth, particularly 
at the dipping is weak. 

So, let's use almost the same equation as I've just concealed. But, do you remember 
a used four here? Okay, before we used three and we got the solution to look like 
that. Now, we will give it a little more energy by putting some moxie in the springs. 
So now, the spring is pulling a little harder, bigger force, a stiffer spring. Okay, the 
characteristic equation is now going to be r^2 + 4r = 0. And therefore, if I solve for 
r, I'm not going to bother trying to factor this because I prepared for this lecture, 
and I know, quadratic formula time, minus four plus or minus the square root of b 
squared, 16, minus four times five, 16 minus 20 is negative four all over two. 

And therefore, that makes negative two plus or minus, this makes, simply, i. 2i 
divided by two, which is i. So, the exponential solution is e to the negative two, you 
don't have to write this in. You can get the thing directly. t, let's use the one with the 
plus sign, and that's going to give, as the real solutions, e^(-2t) cos(t), and e^(-2t) 
sin(t). 



And therefore, the solution is going to be y = e^(-2t) (c1 cos(t) + c2 sin(t)). If you 
want to put initial conditions, you can put them in the same way I did them before. 
Suppose we use the same initial conditions: y(0) = 1, and y'(0) = 0, let's say, wait, 
blah, blah, blah, zero, yeah. Okay, I'd like to take time to actually do the calculation, 
but there's nothing new in it. 

I'd have to take, calculate the derivative here, and then I would substitute in, solve 
equations, and when you do all that, just as before, the answer that you get is y = 
e^(-2t), so, choose the constants c1 and c2 by solving linear equations, and the 
answer is cosine t, so, c1 turns out to be one, and c2 turns out to be two, I hope. 
Okay, I want to know, but what does that look like? Well, use that trigonometric 
identity. The e^(-2t) is just a real factor which is going to reproduce itself. The 
question is, what is cos(t) + 2 sin(t) look like? What's its amplitude as a pure 
oscillation? It's the sqrt(1 + 2^2). 

Remember, it depends on looking at that little triangle, which is one, two, this is a 
different scale than that. And here is the square root of five, right? And, here is phi, 
the phase lag. So, it's equal to the square root of five. So, it's the sqrt(5) e^(-2t), 
and the stuff inside is the cosine of, the frequency is one. Circular frequency is one, 
so it's t - phi, where phi is this angle. How big is that, one and two? Well, if this were 
the square root of three, which is a little less than two, it would be 60Â°. So, this 
must be 70Â°. So, phi is 70Â° plus or minus five, let's say. 

So, it looks like a slightly delayed cosine curve, but the amplitude is falling. So, it has 
to start. So, if I draw it, here's one, here is, let's say, the square root of five up 
about here. Then, the sqrt(5) e^(-2t) looks maybe something like this. So, that's 
sqrt(5) e^(-2t). This is cos(t), but shoved over by not quite pi over two. 

It starts at one, and with the slope zero. So, the solution starts like this. It has to be 
guided in its amplitude by this function out there, and in between it's the cosine 
curve. But it's moved over. So, if this is pi over two, the first time it crosses, it's 
72Â° to the right of that. So, if this is pi over two, it's pi over two plus 70Â° where it 
crosses. So, it must be doing something like this. 

And now, on the other side, it's got to stay within the same amplitude. So, it must be 
doing something like this. Okay, that gets us to, if this is the under-damped case, 
because if you're trying to do this with a swinging door, it means the door's going to 
be swinging back and forth. Or, our little mass now hidden, but you could see it 
behind that board, is going to be doing this. But, it never stops. It never stops. It 
doesn't realize, but not in theoretical life. So, this is the under-damped. All right, so 
it's like Goldilocks and the Three Bears. That's too hot, and this is too cold. What is 
the thing which is just right? 

Well, that's the thing you're going to study on the problem set. So, just right is 
called critically damped. It's what people aim for in trying to damp motion that they 
don't want. Now, what's critically damped? It must be the case just in between these 
two. Neither complex, nor the roots different. It's the case of two equal roots. So, 
r^2 + Ar + B = 0 has two equal roots. Now, that's a very special equation. Suppose 
we call the root, since all of these, notice these roots in this physical case. 

The roots always turn out to be negative numbers, or have a negative real part. I'm 
going to call the root a. So, r = -a, the root. a is understood to be a positive number. 
I want that root to be really negative. Then, the equation looks like, the 



characteristic equation is going to be r plus a, right, if the root is negative a, squared 
because it's a double root. And, that means the equation is of the form r^2 + 2ar + 
a^2 = 0. 

In other words, the ODE looked like this. The ODE looked like y'' + 2ay' plus, in other 
words, the damping and the spring constant were related in this special wake, that 
for a given value of the spring constant, there was exactly one value of the damping 
which produced this in between case. Now, what's the problem connected with it? 
Well, the problem, unfortunately, is staring us in the face when we want to solve it. 
The problem is that we have a solution, but it is y = e^(-at). I don't have another 
root to get another solution with. 

And, the question is, where do I get that other solution from? Now, there are three 
ways to get it. Well, there are four ways to get it. You look it up in Euler. That's the 
fourth way. That's the real way to do it. But, I've given you one way as problem 
number one on the problem set. I've given you another way as problem number two 
on the problem set. And, the third way you will have to wait for about a week and a 
half. And, I will give you a third way, too. 

By that time, you won't want to see any more ways. But, I'd like to introduce you to 
the way on the problem set. And, it is this, that if you know one solution to an 
equation, which looks like a linear equation, in fact, the piece can be functions of t. 
They don't have to be constant, so I'll use the books notation with p's and q's. y 
prime plus q y equals zero. If you know one solution, there's an absolute, ironclad 
guarantee, if you'll know that it's true because I'm asking you to prove it for 
yourself. There's another of the form, having this as a factor, one solution y one, 
let's call it, y = y1 u is another solution. And, you will be able to find u, I swear. 

Now, let's, in the remaining couple of minutes carry that out just for this case 
because I want you to see how to arrange the work nicely. And, I want you to 
arrange your work when you do the problem sets in the same way. So, the way to 
do it is, the solution we know is e^(-at). So, we are going to look for a solution to 
this differential equation. That's the differential equation. And, the solution we are 
going to look for is of the form e^(-at) u. Now, you're going to have to make 
calculation like this several times in the course of the term. Do it this way. y' = -a 
e^(-at) u + e^(-at) u'. 

And then, differentiate again. The answer will be a^2. You differentiate this: a^2 
e^(-at) u. I'll have to do this a little fast, but the next term will be, okay, minus, so 
this times u prime, and from this are you going to get another minus. So, combining 
what you get from here, and here, you're going to get -2a e^(-at) u'. 

And then, there is a final term, which comes from this, e^(-at) u''. Two of these, 
because of a piece here and a piece here combine to make that. And now, to plug 
into the equation, you multiply this by one. In other words, you don't do anything to 
it. You multiply this line by 2a, and you multiply that line by a^2, and you add them. 
On the left-hand side, I get zero. What do I get on the right? Notice how I've arrange 
the work so it adds nicely. This has a squared times this, plus 2a times that, plus one 
times that makes zero. 2a times this plus one times this makes zero. All that 
survives is e^(at) u'', and therefore, e^(-at) u'' = 0. 

So, please tell me, what's u double prime? It's zero. So, please tell me, what's u? It's 
u = c1*t + c2. Now, that gives me a whole family of solutions. Just t would be 



enough because all I am doing is looking for one solution that's different from e^(-
at). And, that solution, therefore, is y = e^(-at) t. And, there's my second solution. 
So, this is a solution of the critically damped case. And, you are going to use it in 
three or four of the different problems on the problem set. But, I think you can deal 
with virtually the whole problem set, except for the last problem, now. 
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