3.37 (Class 15)

Review

More materials can be brazed than soldered

- Higher temps
- Greater strengths

Thinner braze joints are stronger (in tension) due to contact strengthening

Today

Fusion Welding Processes

Interested in heating the material to melt it

Diagram on the board (W/cm²)

- Sun's rays approx 1/10 W/cm^2
- Two limits for heating surface of metals
 - Below approx 300 W/cm² can't melt most metals, thermal conductivity of metal will conduct heat away faster than can store it on the surface
 - Above approx 3x10⁶ W/cm² start vaporizing the metal (laser and electron beam hole welding approx 10⁷, laser weapon at approx 10⁸ shatters the material)
 - \circ 10³ oxy-fuel (typically acetylene) approx 10³
 - Air-fuel flame (propane torch) below 10^2 , also semiconductor chip
 - Open flame, just above 10
 - Arcs approx 10^{4}
 - Resistance welding approx 10⁵
 - Aside on electron beam weapons, propagate beam for 30 miles, but have hose instability, generate very high densities, too high to be useful for welding
- Increasing heat efficiency as power density goes up
 - \circ 10³, may be about 0.1 efficiency, have to preheat more material
 - 10⁶, at about 0.99 efficiency
 - Middle, from about 0.3-0.7
- Decreasing Heat Affected Zone (HAZ) size as power density goes up
 - Approx 1 10 cm at 10^3 , controlled by heating time
 - Approx 0.1 0.5 cm at 10^4
 - Approx 0.1 0.5 cm, at 10⁶ no smaller after above 10⁴, not putting lots of extra heat in during the heating cycle, controlled by how long it takes to cool
 - Common fallacy is to try to eliminated the heat affected zone by using electron beam welding

- Only time saw weld with virtually no heat affected zone, was plutonium at LLNL, like a ceramic, has very low thermal conductivity
- Increasing travel speed as power density goes up
 - \circ Approx 0.01 0.1 cm/s at 10³
 - \circ 0.1 1.1 cm/s at 10⁴
 - 100 cm/s at 10^6
 - Controlling size of the weld pool
 - Human reaction time on the order of 150-200ms, bill drop game on the order of $1/10^{\text{th}}$ of sec
 - Time to control weld pools 10's of ms at high energy densities, can't control manually
 - Manual welding training often starts with oxyacetylene, slower so that can watch the weld pool and carefully control it
- Increasing need to automate as power density goes up
 - Lasers and electron beam need to be automated to use them
- Increasing equipment cost as power density goes up
 - Can approximately change W/cm^2 to \$/capital equipment
 - Oxyacetylene kit can be had for about \$1000
 - Arc welding setup for production welding approx. \$10,000
 - Laser electron beam with automation, safety equipment, approx \$0.5 -\$1million, bigger systems can be \$10million
 - Resistance welding is the only process that doesn't fit this, \$10,000 for equipment that gives the equivalent power density, HAZ, need to automate, travel speeds, etc., no surprise that this is heavily used in the automotive industry
- Increasing production volume requirements as power density goes up
 - Oxyacetylene approx 10 joints/day (say for plumber who needs to do just a few welds)
 - Arc welding approx 100 joints/day
 - Laborer's time, efficiency is very low
 - Automotive (only know how to make 50,000+ per day)
 - Run almost all the time
 - Aerospace (precision and high value added), few expensive parts
 - On-time is about 1-2%
 - Care more about making the perfect weld
- Increasing depth/width ratio
 - Diagrams on board
 - o 0.1
 - o 0.5
 - o 10/1
 - 200/2 (too thin, traps porosities during non-homogenous cooling)

Flames

- Enthalpy of the reaction
 - Acetylene (C2H2, triple bonded carbon with hydrogen on either side, lots of energy released when break this bond)

- Propylene and other complex hydrocarbons start to average out to about the same
- Gasoline not much different than polyethylene, or say tar
- Some things have higher enthalpies than acetylene
 - C2N2, Cyanagen, used a rocket propellant, poison gas, and welding gas (never seen it used)
 - H2N2, Hydrazine, used in nuclear reactors
- Stoichiometry of the oxygen to fuel ration

•

- From the Welding Handbook
- Stochiometric mixture is near the peak
- Rich or lean will drop the temperature considerably, have lots of unburned fuel, create extra baggage since not all atoms participate in the reaction (like society and welfare)
- Presence of inerts (for example Nitrogen in Air)