Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

6.873/HST.951 Medical Decision Support Spring 2005

An overview of clustering and other exploratory data analysis methods

Lucila Ohno-Machado

A few "synonyms"...

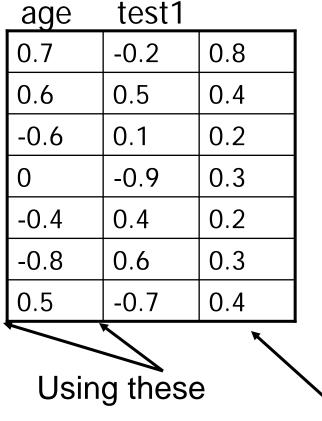
- Agminatics
- Aciniformics
- Q-analysis
- Botryology
- Systematics
- Taximetrics
- Clumping
- Morphometrics

- Nosography
- Nosology
- Numerical taxonomy
- Typology
- Clustering
- A multidimensional space needs to be reduced...

Supervised Models

Case 1

Case 2



We are chasing PARTICULAR patterns in the data...

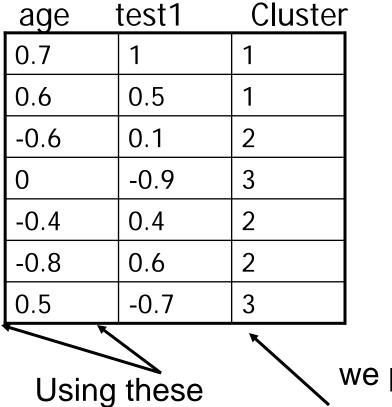
Evaluate against "gold standard"

we predict probability of diagnosis, prognosis

Unsupervised Models

Case 1

Case 2



We are chasing ANY pattern in the data...

We will need to interpret (label) the pattern

we put cases into clusters

Exploratory Data Analysis

- Goal is to flatten the dimensions of data to the spaces that we are familiar with (2-D and 3-D)
- We can "see" the data in these dimensions and extract patterns
- We are looking for clusters of data with similar characteristics overall
- Hypothesis generation versus hypothesis testing
- Fishing expedition versus confirmatory analysis

Outline

Proximity

- Distance Metrics
- Similarity Measures
- Clustering
 - Hierarchical Clustering
 - Agglomerative
 - K-means
- Multidimensional Scaling

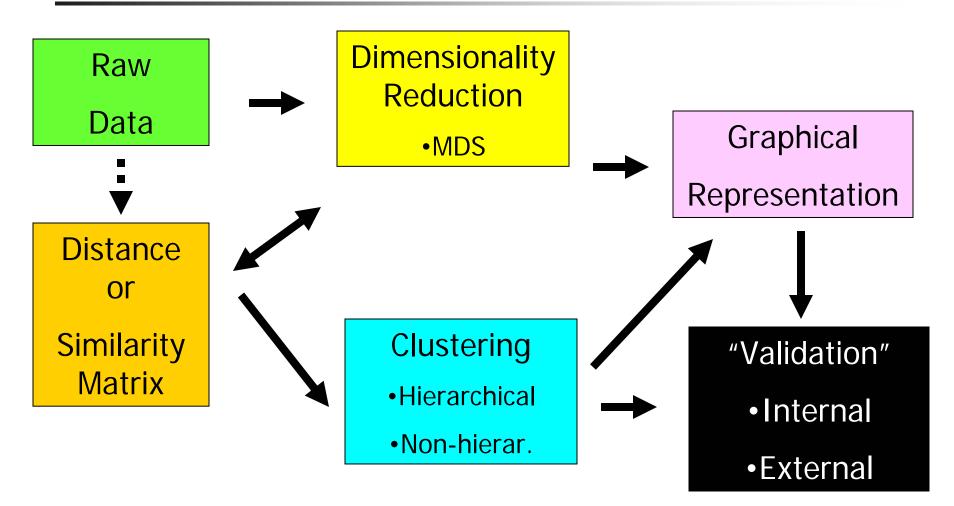
Spatial relations

- Distance and dissimilarity
 - E.g. Euclidean distance, perceived difference
- Proximity and similarity measures
 - E.g. correlation coefficient

Distance matrix

				House	Harvard	MIT	BWH
		•	House				
	•		Harvard	15			
•			MIT	18	4		
	-		BWH	10	3	5	

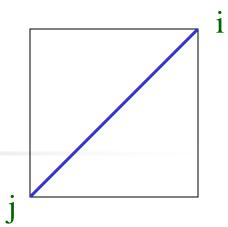
Unsupervised Learning



Algorithms, (dis)similarity measures, and graphical representations

- Most algorithms are not necessarily linked to a particular metric or (dis)similarity measure
- Also not necessarily linked to a particular graphical representation
- Cluster techniques were popular in the 50/60s (psychology experiments)
- There has been recent interest in biomedicine because of the emergence of high throughput technologies
- Old algorithms have been rediscovered and renamed

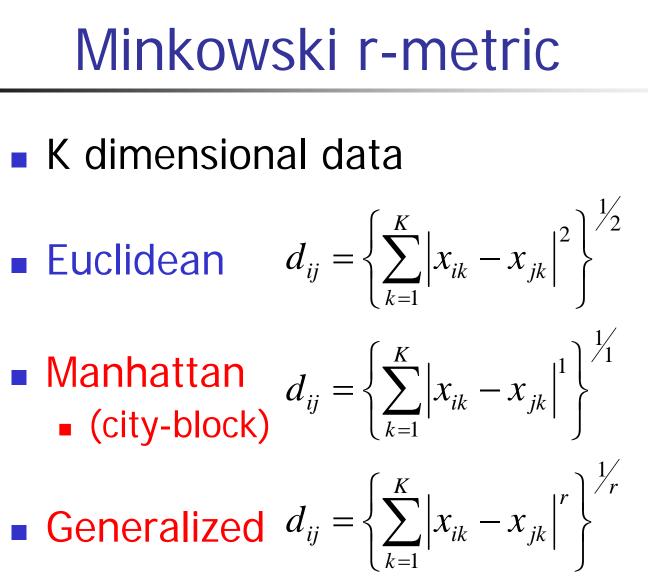
Metrics (distances)

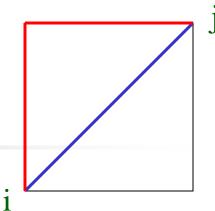


K dimensional data

Euclidean

$$d_{ij} = \left\{ \sum_{k=1}^{K} \left| x_{ik} - x_{jk} \right|^2 \right\}^{\frac{1}{2}}$$





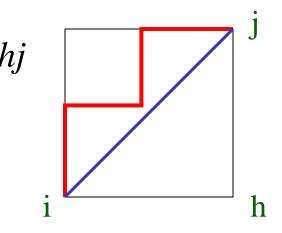
Metric spaces

Positivity Reflexivity

$$d_{ij} > d_{ii} = 0$$

- Symmetry $d_{ij} = d_{ji}$
- Triangle inequality

$$d_{ij} \leq d_{ih} + d_{j}$$



More metrics

• Ultrametric $d_{ij} \le \max[d_{ih}, d_{hj}]$ replaces $d_{ij} \le d_{ih} + d_{hj}$ i

Four-point $d_{hi} + d_{jk} \le \max[(d_{hj} + d_{ik}), (d_{hk} + d_{ij})]$ additive replaces condition $d_{ij} \le d_{ih} + d_{hj}$

Similarity measures

- Similarity function
 - For binary, "shared attributes"

$$s(i,j) = \frac{i^t j}{\|i\| \|j\|}$$

$$s(i,j) = \frac{1}{\sqrt{2 \times 1}}$$

 $i^{t} = [1,0,1]$ $j^{t} = [0,0,1]$

Variations...

Fraction of *d* attributes shared $s(i, j) = \frac{i^{t} j}{d}$

Tanimoto coefficient

$$s(i, j) = \frac{i^{t} j}{i^{t} i + j^{t} j - i^{t} j}$$

$$s(i, j) = \frac{1}{2 + 1 - 1}$$

$$i^{t} = [1, 0, 1]$$

$$j^{t} = [0, 0, 1]$$

Popular similarity measures

- Correlation
 - Linear
 - Rank
- Entropy-based
 - Mutual information, based on the P(i|j)
- Ad-hoc
 - Human perception

Clustering

Hierarchical Clustering

- Agglomerative Technique (average link)
 - Step 1: "Merge" 2 closest cases into a cluster
 - Step 2: Define cluster representative (e.g., cluster means) as a "case" and remove the individual cases that compose the cluster
 - Go to step 1 until all cases are linked

- Visualization
 - Dendrogram, Tree, Venn diagram

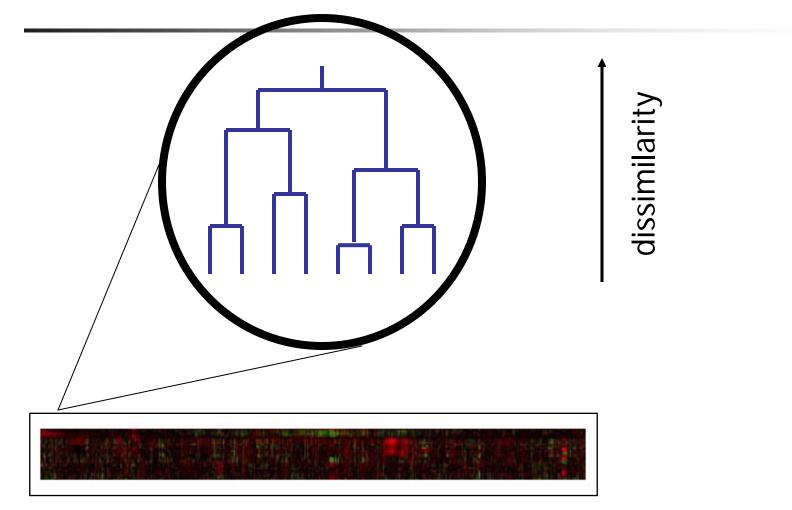
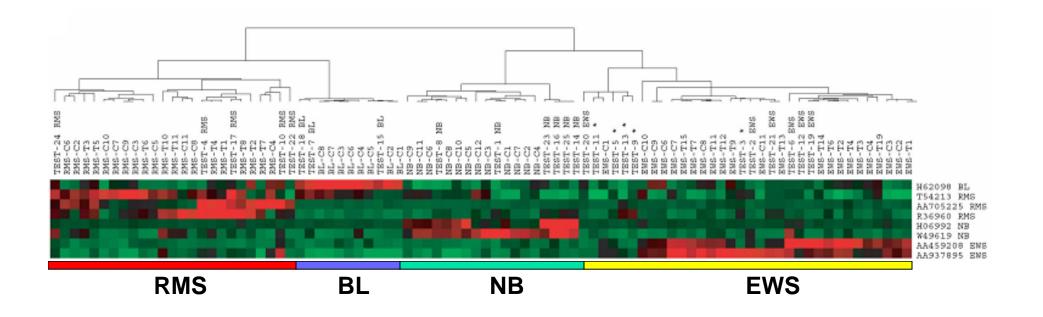


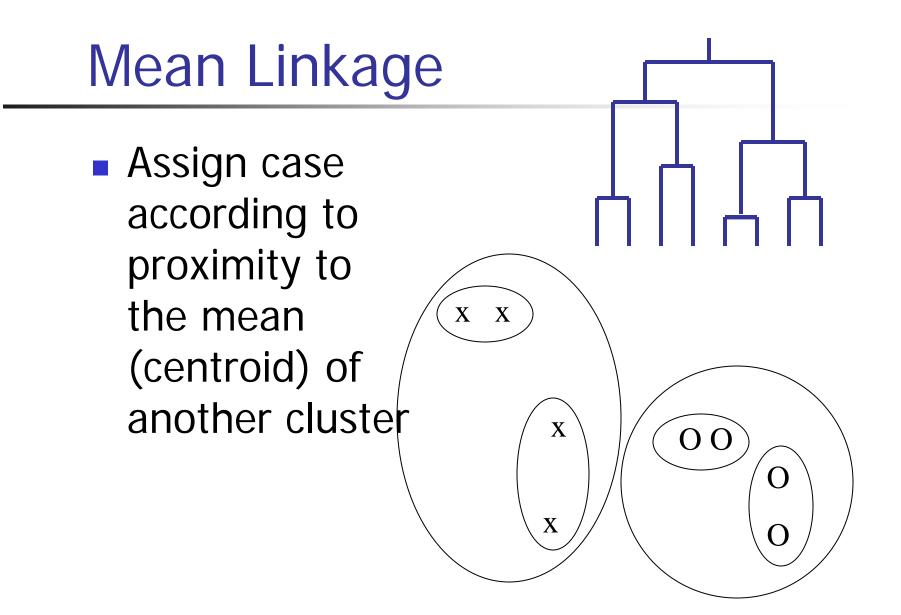
Figure by MIT OCW.

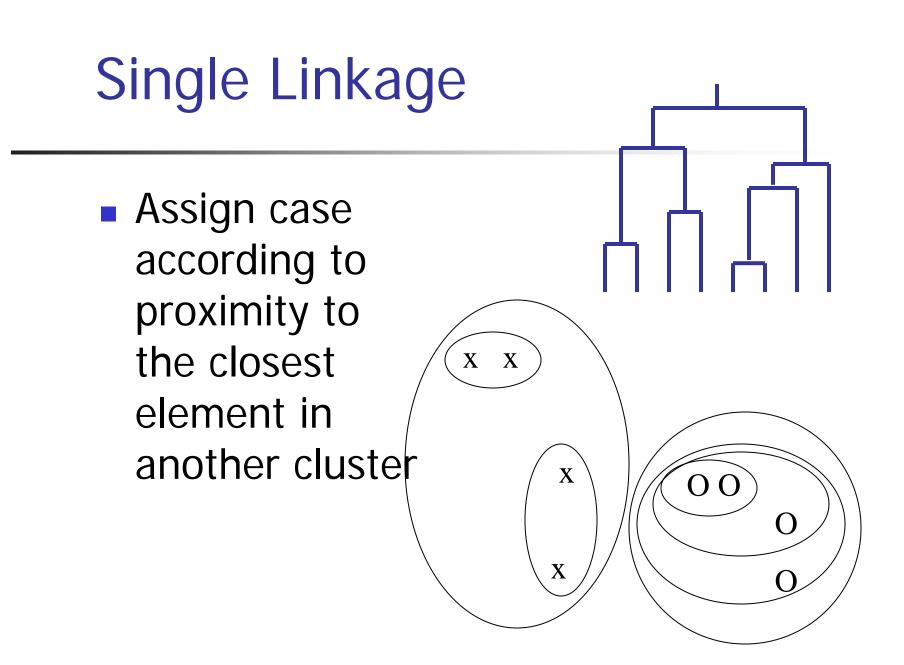
Hierarchical Clustering on Small Round Blood Cell Tumours

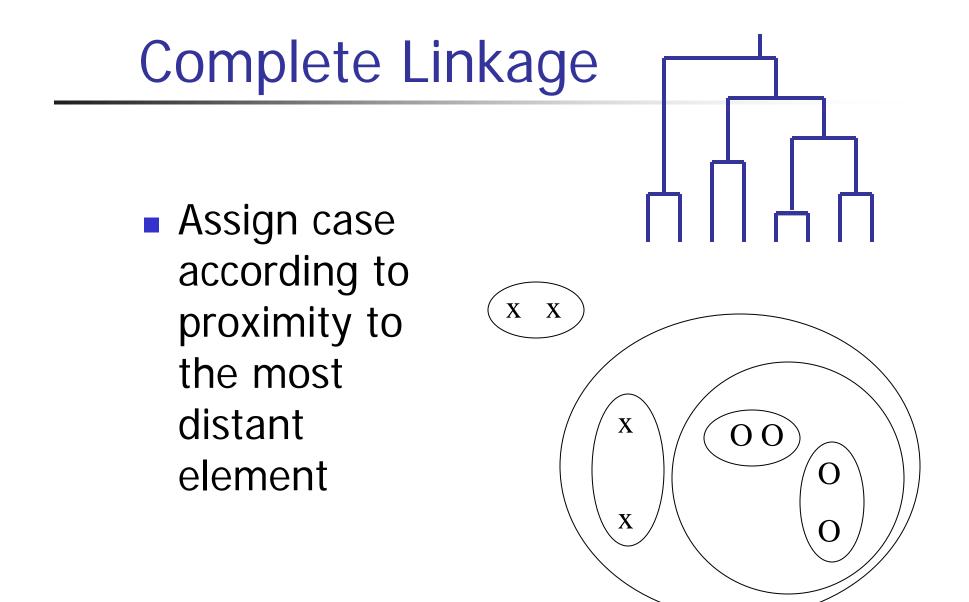


Linkages

- Average-linkage: proximity to the mean (centroid)
- Single-linkage: proximity to the closest element in another cluster
- Complete-linkage: proximity to the most distant element







Additive Trees

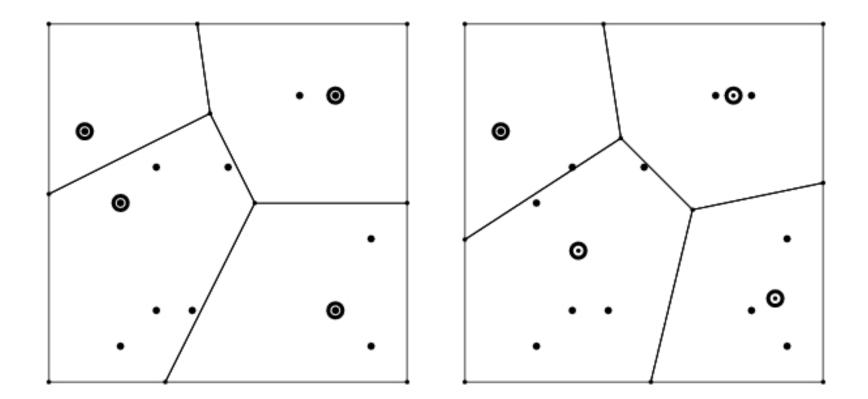
- Commonly the minimum spanning tree
- Nearest neighbor approach to hierarchical clustering

k-means clustering (Lloyd's algorithm)

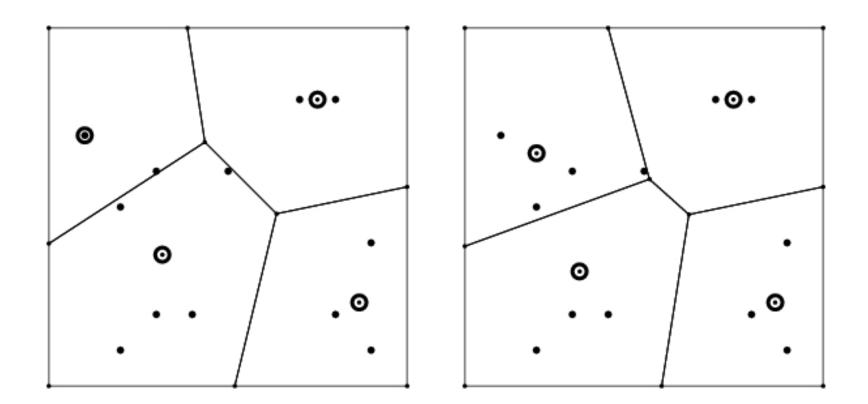
- 1. Select *k* (number of clusters)
- 2. Select *k* initial cluster centers c_1, \ldots, c_k
- 3. Iterate until convergence: For each *i*,
 - 1. Determine data vectors $V_{i1}, ..., V_{in}$ closest to C_i (i.e., partition space)

2. Update C_i as $C_i = 1/n (V_{i1} + ... + V_{in})$

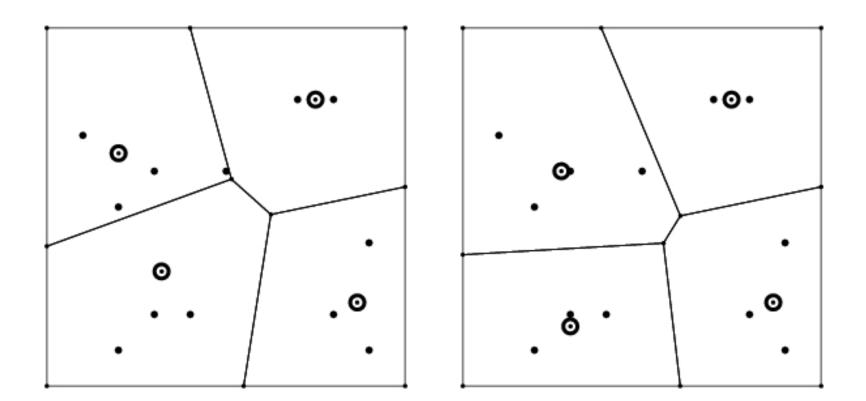
k-means clustering example



k-means clustering example



k-means clustering example



Common mistakes

- Refer to dendrograms as meaning "hierarchical clustering" in general
- Misinterpretation of tree-like graphical representations
- Ill definition of clustering criterion
 - Declare a clustering algorithm as "best"
- Expect classification model from clusters
- Expect robust results with little/poor data

Dimensionality Reduction

Multidimensional Scaling

- Geometrical models
- Uncover structure or pattern in observed proximity matrix
- Objective is to determine both dimensionality *d* and the position of points in the *d*-dimensional space

Classic Multidimensional Scaling

- Also known as principal coordinates analysis (because it is principal components analysis) ⁽³⁾
- From distances, find coordinates
- Constrain origin to centroid of data

Metric and non-metric MDS

- Metric (Torgerson 1952)
- Non-metric (Shepard 1961)
 - Estimates nonlinear form of the monotonic function

$$s_{ij} = f_{mon}(d_{ij})$$

Figures removed due to copyright reasons.

Please see:

Khan, J., et al. "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks." *Nat Med* 7, no. 6 (Jun 2001): 673-9.

Visualization

- Clustering is often good for visualization, but it is generally not very useful to separate data into pre-defined categories
- But there are counterexamples...

Figures removed due to copyright reasons.

Please see:

Khan, J., et al. "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks." *Nat Med* 7, no. 6 (Jun 2001): 673-9. Figures removed due to copyright reasons.

Please see:

Khan, J., et al. "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks." *Nat Med* 7, no. 6 (Jun 2001): 673-9.